1/295x+12)=2x-3

Simple and best practice solution for 1/295x+12)=2x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/295x+12)=2x-3 equation:



1/295x+12)=2x-3
We move all terms to the left:
1/295x+12)-(2x-3)=0
Domain of the equation: 295x!=0
x!=0/295
x!=0
x∈R
We add all the numbers together, and all the variables
1/295x+12)-(2x=0
We multiply all the terms by the denominator
-2x*295x+1+12=0
We add all the numbers together, and all the variables
-2x*295x+13=0
Wy multiply elements
-590x^2+13=0
a = -590; b = 0; c = +13;
Δ = b2-4ac
Δ = 02-4·(-590)·13
Δ = 30680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{30680}=\sqrt{4*7670}=\sqrt{4}*\sqrt{7670}=2\sqrt{7670}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7670}}{2*-590}=\frac{0-2\sqrt{7670}}{-1180} =-\frac{2\sqrt{7670}}{-1180} =-\frac{\sqrt{7670}}{-590} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7670}}{2*-590}=\frac{0+2\sqrt{7670}}{-1180} =\frac{2\sqrt{7670}}{-1180} =\frac{\sqrt{7670}}{-590} $

See similar equations:

| 26-12x=11 | | 26-12x=9 | | 26-12x=7 | | 5x+32=3x+50x= | | 26-12x=5 | | 26-12x=3 | | 9x-21+8x+34=47x= | | 26-12x=10 | | 15/3=50/x | | 26-12x=8 | | 26-12x=6 | | 26-12x=1 | | 26-12x=4 | | 26-12x=2 | | 26+12x=15 | | 26+12x=13 | | 26+12x=9 | | 26+12x=5 | | 26+12x=8 | | 26+12x=3 | | 26+12x=4 | | 26+12x=2 | | 8d=4(-12) | | -.06x^2+1.5x+6=0 | | 6(2x-6)=-84 | | 7c=4-(-2) | | 4b=(-10)/(-5) | | 5=26x12+ | | 12-26x=2 | | 12+26x=6 | | 2a=-6+4 | | -6g-9.2=51.2 |

Equations solver categories