1/23n+12=n+14

Simple and best practice solution for 1/23n+12=n+14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/23n+12=n+14 equation:



1/23n+12=n+14
We move all terms to the left:
1/23n+12-(n+14)=0
Domain of the equation: 23n!=0
n!=0/23
n!=0
n∈R
We get rid of parentheses
1/23n-n-14+12=0
We multiply all the terms by the denominator
-n*23n-14*23n+12*23n+1=0
Wy multiply elements
-23n^2-322n+276n+1=0
We add all the numbers together, and all the variables
-23n^2-46n+1=0
a = -23; b = -46; c = +1;
Δ = b2-4ac
Δ = -462-4·(-23)·1
Δ = 2208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2208}=\sqrt{16*138}=\sqrt{16}*\sqrt{138}=4\sqrt{138}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-4\sqrt{138}}{2*-23}=\frac{46-4\sqrt{138}}{-46} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+4\sqrt{138}}{2*-23}=\frac{46+4\sqrt{138}}{-46} $

See similar equations:

| -2x+12=2x8 | | 4(a)=28 | | 11+6(x-7)/7=11 | | r/2-5=15 | | 3x+2/8.5=2 | | 2x=35x+7=3 | | 21x-2=57 | | 69=5(7)^2x+4 | | 4x-3=65-2x | | 9x-5/2=11 | | -283=-7(-5-7n)+4 | | q=4.2——5q-17 | | 41x-7=116 | | k^2+6^2=10^2 | | 3^x+1=43 | | 6+2x=82 | | 16t^2+24t-6=0 | | 3n–8=2n+2n= | | 4×(x-2)-5×(2-3x)=4×(2x-6) | | mB=143° | | x+3.5=1/2+12 | | 2(7r+4+4r=-136 | | 10a-6=2a+12 | | -3k+32=131 | | x+x+63+185=360 | | 5~0.5x=13 | | –24=q–19 | | 3x-10+6x+5+6x+5=360 | | -144=-9(-3+k) | | -80=-5(6n+4) | | x+5x-6/2=8 | | 1-8b=25 |

Equations solver categories