1/20+5/4y=3/5y

Simple and best practice solution for 1/20+5/4y=3/5y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/20+5/4y=3/5y equation:



1/20+5/4y=3/5y
We move all terms to the left:
1/20+5/4y-(3/5y)=0
Domain of the equation: 4y!=0
y!=0/4
y!=0
y∈R
Domain of the equation: 5y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
5/4y-(+3/5y)+1/20=0
We get rid of parentheses
5/4y-3/5y+1/20=0
We calculate fractions
100y^2/800y^2+1000y/800y^2+(-480y)/800y^2=0
We multiply all the terms by the denominator
100y^2+1000y+(-480y)=0
We get rid of parentheses
100y^2+1000y-480y=0
We add all the numbers together, and all the variables
100y^2+520y=0
a = 100; b = 520; c = 0;
Δ = b2-4ac
Δ = 5202-4·100·0
Δ = 270400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{270400}=520$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(520)-520}{2*100}=\frac{-1040}{200} =-5+1/5 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(520)+520}{2*100}=\frac{0}{200} =0 $

See similar equations:

| 9x-9=3x | | 0.4x=12.5 | | -4(2x+3)=2x-6-(8x=2) | | -5+11r=16-10r | | −6=3(2x+8) | | 30=8-2(b-3) | | 8(6b-5)=-8(1-7b) | | Z+50=44z-50 | | (6t)^2=0 | | x–6=-2 | | 6(x+22)=204 | | 87+35+x=180 | | 16b+17=15b | | 5=12x-48 | | -10x+2=-7x-8-1x | | 2(x+12)=3(x+1)-(4x+6) | | 3-5v=10+2v-8v | | 12=3(c-3) | | (2x+9)°=(7x+24)° | | (2x+45=) | | -12.2z-13.4z=-179 | | -19=-4+2/5x+10 | | (2x-20)(3x)=35 | | 8x-12+6x=-6x+5 | | x-8=63 | | 31=10(3+w)-9 | | -3(4x+3)+4(O6x+1)=43 | | 20y+10-10y+20=70 | | -3x-6x=-12x+7 | | 160+.4x=80+.9X | | 3.5x=29.4 | | 3(y+2)+3y=36 |

Equations solver categories