1/2*4x+10=5-3x

Simple and best practice solution for 1/2*4x+10=5-3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2*4x+10=5-3x equation:



1/2*4x+10=5-3x
We move all terms to the left:
1/2*4x+10-(5-3x)=0
Domain of the equation: 2*4x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/2*4x-(-3x+5)+10=0
We get rid of parentheses
1/2*4x+3x-5+10=0
We multiply all the terms by the denominator
3x*2*4x-5*2*4x+10*2*4x+1=0
Wy multiply elements
24x^2*4-40x*4+80x*4+1=0
Wy multiply elements
96x^2-160x+320x+1=0
We add all the numbers together, and all the variables
96x^2+160x+1=0
a = 96; b = 160; c = +1;
Δ = b2-4ac
Δ = 1602-4·96·1
Δ = 25216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25216}=\sqrt{64*394}=\sqrt{64}*\sqrt{394}=8\sqrt{394}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-8\sqrt{394}}{2*96}=\frac{-160-8\sqrt{394}}{192} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+8\sqrt{394}}{2*96}=\frac{-160+8\sqrt{394}}{192} $

See similar equations:

| -10(10x-8)-3=-523 | | 70=10+6x | | 3(2+x)=(x-2) | | 2x–3x=5x+3 | | x^2-x-1260=0 | | x^2-x-2450=0 | | x(x-1)=2450 | | 6m+5=-(-1-8) | | )-6n-20=-2n+4(1-3n | | 2x2-2x-180=0 | | 49=0.00657x^2-0.330x-0.0633 | | 1/3(3x+12)=-15 | | 5x-0.9=0.5 | | x/100=12/36 | | 1/2y=3/8y | | .04x+x=41868 | | -4/7x-9/28x+1/4=-54 | | 8x−7=6x+7 | | 1.12^n=2 | | -(3x-5)-(3x-5)+3=-5(x-1)-(4x+4)+3 | | 7x-8-2x=9x-5 | | .15(x+2000)=3,300 | | (2x)*x=288 | | 4(x+17)=17(x+2) | | (W+5)+(w-7)=2w-2 | | -13-1/2s=11/12s+2 | | (W+5)-(w+7)=-2 | | 85=5v+10 | | 10=(5x^2)+5x | | 4x+-26+3x+4=90 | | x-x/5=60 | | 112=4(-3+x) |

Equations solver categories