1/2*10x+6=8x-6

Simple and best practice solution for 1/2*10x+6=8x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2*10x+6=8x-6 equation:



1/2*10x+6=8x-6
We move all terms to the left:
1/2*10x+6-(8x-6)=0
Domain of the equation: 2*10x!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
1/2*10x-8x+6+6=0
We multiply all the terms by the denominator
-8x*2*10x+6*2*10x+6*2*10x+1=0
Wy multiply elements
-160x^2*1+120x*1+120x*1+1=0
Wy multiply elements
-160x^2+120x+120x+1=0
We add all the numbers together, and all the variables
-160x^2+240x+1=0
a = -160; b = 240; c = +1;
Δ = b2-4ac
Δ = 2402-4·(-160)·1
Δ = 58240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{58240}=\sqrt{64*910}=\sqrt{64}*\sqrt{910}=8\sqrt{910}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(240)-8\sqrt{910}}{2*-160}=\frac{-240-8\sqrt{910}}{-320} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(240)+8\sqrt{910}}{2*-160}=\frac{-240+8\sqrt{910}}{-320} $

See similar equations:

| x+39+132=180 | | 3(2m–1)+5=6(m+1) | | v=⅓×3.14×(2)²×3 | | 1/2x10x+6=8x-6 | | Y=3+6x(6) | | -1-(y+2)=2(-2+1) | | 8x–2–5x+7=4x+3 | | w−12=44 | | 0.75x+3=0.50x+14 | | -2-(y+2)=2(-4+1) | | 1/210x+6=8x-6 | | -3-(y+2)=2(-6+1) | | −2y=10 | | 4x-6x+23=13 | | 5(5g-15)=40 | | 5x7=135 | | 8w−12=44 | | –5x+1=–17 | | a/3=2.3 | | 3(d+6)=27 | | 5x+12=14x-48(2) | | –19w=–855 | | -4-(y+2)=2(-8+1) | | (5x+12)=14x-48(2) | | 39=9+5/11​ z | | 2k/3=12 | | 4w+9=9w+14 | | m2-6m+5=0 | | X^5x+6=0 | | .5(5x+12)=14x-48 | | 0.3x+1.368=0.24x+1.2 | | 8g=1.50+195 |

Equations solver categories