1/2(x)+9=180-x

Simple and best practice solution for 1/2(x)+9=180-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2(x)+9=180-x equation:



1/2(x)+9=180-x
We move all terms to the left:
1/2(x)+9-(180-x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x-(-1x+180)+9=0
We get rid of parentheses
1/2x+1x-180+9=0
We multiply all the terms by the denominator
1x*2x-180*2x+9*2x+1=0
Wy multiply elements
2x^2-360x+18x+1=0
We add all the numbers together, and all the variables
2x^2-342x+1=0
a = 2; b = -342; c = +1;
Δ = b2-4ac
Δ = -3422-4·2·1
Δ = 116956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116956}=\sqrt{4*29239}=\sqrt{4}*\sqrt{29239}=2\sqrt{29239}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-342)-2\sqrt{29239}}{2*2}=\frac{342-2\sqrt{29239}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-342)+2\sqrt{29239}}{2*2}=\frac{342+2\sqrt{29239}}{4} $

See similar equations:

| x/2-1/3=x/4 | | (x/7)+10=16 | | x=22+1/2 | | 2(16+4x)-3+5x=254 | | 4x-7x-54=36-7x | | 4(5-7x)+4x=68 | | (48/x)+2=10 | | 9/14x=2 | | n=12(4) | | –10w=–6−9w | | (x/2)-5=1 | | 20=½6h | | 2(2z-6)=4(3-2z | | -5(x=6)-10=10 | | 12x-44=64x= | | -6x11=7-10x | | 7+21x=35x+14x | | 3(x+12)^2=27 | | 336+21x=33x | | −4+5u=−39 | | 2x+-5=1x | | 3/2p=-4 | | 12=w/2+6 | | 2b-b=1 | | 7-8p=-9-10p | | 2x+20=40x= | | -8h-2=-7h | | 19p-17p=18 | | (7x-5)+(3+x)=90 | | -2+2u=10+5u | | -2c+8=-c | | 56=8y/15 |

Equations solver categories