If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(18x+16)-6=-3/5(20x-35)
We move all terms to the left:
1/2(18x+16)-6-(-3/5(20x-35))=0
Domain of the equation: 2(18x+16)!=0
x∈R
Domain of the equation: 5(20x-35))!=0We calculate fractions
x∈R
(5x2/(2(18x+16)*5(20x-35)))+(-(-6x1)/(2(18x+16)*5(20x-35)))-6=0
We calculate terms in parentheses: +(5x2/(2(18x+16)*5(20x-35))), so:
5x2/(2(18x+16)*5(20x-35))
We multiply all the terms by the denominator
5x2
We add all the numbers together, and all the variables
5x^2
Back to the equation:
+(5x^2)
We calculate terms in parentheses: +(-(-6x1)/(2(18x+16)*5(20x-35))), so:a = 5; b = 6; c = -6;
-(-6x1)/(2(18x+16)*5(20x-35))
We add all the numbers together, and all the variables
-(-6x)/(2(18x+16)*5(20x-35))
We multiply all the terms by the denominator
-(-6x)
We get rid of parentheses
6x
Back to the equation:
+(6x)
Δ = b2-4ac
Δ = 62-4·5·(-6)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{39}}{2*5}=\frac{-6-2\sqrt{39}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{39}}{2*5}=\frac{-6+2\sqrt{39}}{10} $
| 55/x=1 | | 1/3x=-22+x | | 2.4x+2.6=1 | | 15x+8=100 | | 3x^2=8x+7 | | 4a=50-6a | | -30−6r=-36 | | 5h+(-4h)=-8 | | -4(r+2)=4(-4(r+2)=4(2-4r) | | 5(2d+3)=8d-1 | | 13x-1=10x-3 | | 3a+15=13 | | −3y=−12 | | -3x-+2=-4x+4 | | 195x+20=55 | | 3x+14=7x10 | | 2d=5=5-2d | | 5(2n-6)=3n-50+7n | | 13=-2(y-4)3y | | −3y=−12. | | 195+20x=55 | | 7m-5m-12=-6 | | 2n+13=75. | | 8+4x=9-2x | | 1-2(5-n)=-2n+11 | | 2(x-4)-(x-2)=x+6-(-8) | | -23=-7y+4(y-8) | | 5x+13+2x-7=180 | | 10–2x=19x | | 0=-5+3v+2 | | 24x-4=116 | | 100+0.3x=30+0.8x |