If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(12x+8)-10=-1/5(20x-15)
We move all terms to the left:
1/2(12x+8)-10-(-1/5(20x-15))=0
Domain of the equation: 2(12x+8)!=0
x∈R
Domain of the equation: 5(20x-15))!=0We calculate fractions
x∈R
(5x2/(2(12x+8)*5(20x-15)))+(-(-2x1)/(2(12x+8)*5(20x-15)))-10=0
We calculate terms in parentheses: +(5x2/(2(12x+8)*5(20x-15))), so:
5x2/(2(12x+8)*5(20x-15))
We multiply all the terms by the denominator
5x2
We add all the numbers together, and all the variables
5x^2
Back to the equation:
+(5x^2)
We calculate terms in parentheses: +(-(-2x1)/(2(12x+8)*5(20x-15))), so:a = 5; b = 2; c = -10;
-(-2x1)/(2(12x+8)*5(20x-15))
We add all the numbers together, and all the variables
-(-2x)/(2(12x+8)*5(20x-15))
We multiply all the terms by the denominator
-(-2x)
We get rid of parentheses
2x
Back to the equation:
+(2x)
Δ = b2-4ac
Δ = 22-4·5·(-10)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{51}}{2*5}=\frac{-2-2\sqrt{51}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{51}}{2*5}=\frac{-2+2\sqrt{51}}{10} $
| 2(f-71)=6 | | -4/7x-3/28x+1/4x=36 | | -6(10d-10)=240 | | 9(v+3)=63 | | -6/5n=8 | | 5x+3-3x=2(x+3)-6 | | 5x-2=3x+17 | | 7(7b-7)=833 | | -x+9=37+6x | | 5+11x=13x-5 | | C=35.50-0.06x | | 720=5(6+8h) | | 1x+18-3x=20 | | C=35.50-6x | | 7x+14=12x+14 | | -3(-7+2r)=9 | | 6(x+1)=491+.25x)+6+3x | | p-58/5=8 | | z3− 1=1 | | 6+2q=12 | | -5(-9+2y)=-20 | | 12x+58=12 | | 15x-3/5=39 | | 5^(2x-2)+(10^x)/25=5^(x+3)+125*2^x | | 9(3+5w)=432 | | y-1.72=6.62 | | -3(3x-3)=-9+9x | | h-4+ -1=3 | | 7x-(3x+5)-8=½(8x+20)-7x+5 | | 25=-49-7w | | -2+2q=-10 | | -6=f+-9 |