If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(10x+18)-20=1/3(24x-27)
We move all terms to the left:
1/2(10x+18)-20-(1/3(24x-27))=0
Domain of the equation: 2(10x+18)!=0
x∈R
Domain of the equation: 3(24x-27))!=0We calculate fractions
x∈R
(3x2/(2(10x+18)*3(24x-27)))+(-2x1/(2(10x+18)*3(24x-27)))-20=0
We calculate terms in parentheses: +(3x2/(2(10x+18)*3(24x-27))), so:
3x2/(2(10x+18)*3(24x-27))
We multiply all the terms by the denominator
3x2
We add all the numbers together, and all the variables
3x^2
Back to the equation:
+(3x^2)
We calculate terms in parentheses: +(-2x1/(2(10x+18)*3(24x-27))), so:We get rid of parentheses
-2x1/(2(10x+18)*3(24x-27))
We multiply all the terms by the denominator
-2x1
We add all the numbers together, and all the variables
-2x
Back to the equation:
+(-2x)
3x^2-2x-20=0
a = 3; b = -2; c = -20;
Δ = b2-4ac
Δ = -22-4·3·(-20)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{61}}{2*3}=\frac{2-2\sqrt{61}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{61}}{2*3}=\frac{2+2\sqrt{61}}{6} $
| g÷17=5 | | (X+14)+(5x+5)+(2x+17)=180 | | p=10-0.2 | | 7y^2+(4-y)^2=64 | | c/3+5=9 | | -3(7x+8)=-255 | | Y=100(1.5x)+3 | | 9x-10=82 | | 5(-3+3x)=-180 | | 10x-(2x-3)=11 | | -2(2+2x)=-20 | | 1x(.08)=30 | | 4(x=3)+5=109 | | (6x-8)+(x+15)+(7x+19)=180 | | 8y^2-8y=48 | | q+3=16 | | 7(7-4x)=217 | | Y+12=-4x | | 7(4x+3)=49 | | 2^(x)=64 | | 19+w=41 | | 61=3-8v | | -19=14m+17 | | (-2x²+2x+1)(4x²−2x)=0 | | 20/21=11/7g | | -7(6+2x)=-84 | | 3x-27=-3(x+9) | | −h5=−3 | | u/5+4=10 | | 4z/10=-11 | | 6x-47=180 | | −52=f2 |