If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(10x+16)-6=-2/3(21x-24)
We move all terms to the left:
1/2(10x+16)-6-(-2/3(21x-24))=0
Domain of the equation: 2(10x+16)!=0
x∈R
Domain of the equation: 3(21x-24))!=0We calculate fractions
x∈R
(3x2/(2(10x+16)*3(21x-24)))+(-(-4x1)/(2(10x+16)*3(21x-24)))-6=0
We calculate terms in parentheses: +(3x2/(2(10x+16)*3(21x-24))), so:
3x2/(2(10x+16)*3(21x-24))
We multiply all the terms by the denominator
3x2
We add all the numbers together, and all the variables
3x^2
Back to the equation:
+(3x^2)
We calculate terms in parentheses: +(-(-4x1)/(2(10x+16)*3(21x-24))), so:a = 3; b = 4; c = -6;
-(-4x1)/(2(10x+16)*3(21x-24))
We add all the numbers together, and all the variables
-(-4x)/(2(10x+16)*3(21x-24))
We multiply all the terms by the denominator
-(-4x)
We get rid of parentheses
4x
Back to the equation:
+(4x)
Δ = b2-4ac
Δ = 42-4·3·(-6)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{22}}{2*3}=\frac{-4-2\sqrt{22}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{22}}{2*3}=\frac{-4+2\sqrt{22}}{6} $
| 8x–15=3x+7 | | 500=106.7606x | | 3/9g-1/3=10/3 | | 7(2–x)=7x | | 6a+12+4a=20 | | -7(8+7x)=-252 | | 20x-(9x-6)=50 | | 5s–6=3s+2 | | 10x^2+9=× | | 4x^2+20x-96^2=0 | | |7u|=77 | | 50=100.4814x | | 3x=15^2x-5 | | 0=x^2-0.5x-7.5 | | 50=115.8314x | | w/4-2=18 | | w4-2=18 | | 17=10b+2 | | 0=x^2+10x-144 | | 50=129.6349x | | 3004=6b+4 | | 3004=6b | | 3j-3=0 | | -2b+6=-12 | | x^2=18x+59 | | 9=30/x | | 47=19-9x | | 9n+8=26 | | 5x2−5=0 | | 5t-10=0 | | -5+9x=-2 | | x+5=92 |