If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/163x+5=1/64x+4
We move all terms to the left:
1/163x+5-(1/64x+4)=0
Domain of the equation: 163x!=0
x!=0/163
x!=0
x∈R
Domain of the equation: 64x+4)!=0We get rid of parentheses
x∈R
1/163x-1/64x-4+5=0
We calculate fractions
64x/10432x^2+(-163x)/10432x^2-4+5=0
We add all the numbers together, and all the variables
64x/10432x^2+(-163x)/10432x^2+1=0
We multiply all the terms by the denominator
64x+(-163x)+1*10432x^2=0
Wy multiply elements
10432x^2+64x+(-163x)=0
We get rid of parentheses
10432x^2+64x-163x=0
We add all the numbers together, and all the variables
10432x^2-99x=0
a = 10432; b = -99; c = 0;
Δ = b2-4ac
Δ = -992-4·10432·0
Δ = 9801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9801}=99$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-99)-99}{2*10432}=\frac{0}{20864} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-99)+99}{2*10432}=\frac{198}{20864} =99/10432 $
| 3(c-3)=15 | | 53x+7=25x-4 | | j+21/5=7 | | -1=(p+5)/(-16) | | -5x+60=5x+20 | | g-41/5=6 | | -96=-8j=-32 | | m^2-6m+2=9 | | -5(s+38)=45 | | v/2+3=5 | | 3.5-0.03x=-0.1 | | -6+v/2=6 | | (3x-2)^2=75 | | -h/7=6 | | 2-(4x+1)=15 | | n^2+2n-77=6 | | 3(3x-5)-3=3(x-5)+27 | | -4/5w+2=-2 | | k/4+6=9 | | -38=-y/5 | | 2.5x^2-10x=0 | | 2(4)-1y=6 | | 2(4)-y=6 | | 18k+13=355 | | 7+2(8x+2)=-9-8(2x+4) | | -2x^2+34x-104=0 | | x^2-9=11-x | | |4-5x|-10=3 | | 120=-5(2n-8) | | 5(x+9)-3x=12+2x+33 | | 2y-16=22 | | 4=-5k+3k |