1/10x-11=3/5x

Simple and best practice solution for 1/10x-11=3/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/10x-11=3/5x equation:



1/10x-11=3/5x
We move all terms to the left:
1/10x-11-(3/5x)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/10x-(+3/5x)-11=0
We get rid of parentheses
1/10x-3/5x-11=0
We calculate fractions
5x/50x^2+(-30x)/50x^2-11=0
We multiply all the terms by the denominator
5x+(-30x)-11*50x^2=0
Wy multiply elements
-550x^2+5x+(-30x)=0
We get rid of parentheses
-550x^2+5x-30x=0
We add all the numbers together, and all the variables
-550x^2-25x=0
a = -550; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·(-550)·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*-550}=\frac{0}{-1100} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*-550}=\frac{50}{-1100} =-1/22 $

See similar equations:

| y=3/2(4) | | 1/10x-11=3/5 | | 3t-t=t-7 | | 4/41x+20/41=8/41 | | 2^-2x=32 | | c(11+6c)=35 | | Y-4=11×x-4 | | -135=-6x-3(7x+15) | | -3/5+2/9v=-5/3 | | x^​2-5x+2=0 | | 4^n+2=64 | | (4x)+(37/5)=-17 | | 53+76+2x+4=180 | | -2x-11=-7 | | r(18+9r)=7 | | 1/26x-4=2(24-x) | | h=(-16)×(1.2)^2+(h-20.04)×(1.2)+3 | | 8.5+x=2/5 | | h=-(16)×(1.2)^2+(h-20.04)×(1.2)+3 | | a/6+9=13 | | w+1/7=5/14 | | -5x-3(2x+4)=-23 | | z/2+8=19 | | h=(-16)(1.2)^2+(h-20.04)(1.2)+3 | | 5x-520=3025 | | 5(1/2)^x=160 | | 4x+(37/5)=-17 | | x/10+9=17 | | h=(-16)(1.2)+(h-20.04)(1.2)+3 | | 3(x+4)=5x+3+7x | | v/3+2=8 | | X-3y=44 |

Equations solver categories