1/10x+5=-3x-13+4x

Simple and best practice solution for 1/10x+5=-3x-13+4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/10x+5=-3x-13+4x equation:



1/10x+5=-3x-13+4x
We move all terms to the left:
1/10x+5-(-3x-13+4x)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
We add all the numbers together, and all the variables
1/10x-(x-13)+5=0
We get rid of parentheses
1/10x-x+13+5=0
We multiply all the terms by the denominator
-x*10x+13*10x+5*10x+1=0
Wy multiply elements
-10x^2+130x+50x+1=0
We add all the numbers together, and all the variables
-10x^2+180x+1=0
a = -10; b = 180; c = +1;
Δ = b2-4ac
Δ = 1802-4·(-10)·1
Δ = 32440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32440}=\sqrt{4*8110}=\sqrt{4}*\sqrt{8110}=2\sqrt{8110}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-2\sqrt{8110}}{2*-10}=\frac{-180-2\sqrt{8110}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+2\sqrt{8110}}{2*-10}=\frac{-180+2\sqrt{8110}}{-20} $

See similar equations:

| C=125x+800. | | -5h+1-13h=-17h+20 | | 3x–2.5=6.5 | | 1/3a+10=13 | | 102=x=15 | | R=150x | | 4/5x+1/5x=11 | | -14.5d-5.88=-14.1d | | 3x-24)-8(x+12)=4-9(x-36) | | –24+12d=2(d–3)+22–24+12d=2(d–3)+22 | | 3/10d=3/4 | | 2(v−5)=2 | | 2|x|+5=9 | | -.5x+2=-1.5x-4 | | -2g-16=14+4g | | 3+x=9. | | 4=2(x−4) | | -2n+1=8(n+2)-5n | | -3-8=3x+4-2x | | 1=r−82 | | 4=2(r−4) | | -15s=16-14s | | 7n-79=5 | | F=9/5x-20+32= | | 46=7-13x | | -4x+10+10×=4 | | -0.69x+0.39x=8.1 | | 3(4x-2)=92x+5 | | -15u+7.2=18.9u-16.53 | | 3=m+3/3 | | 48=7-13x | | Y=5/7x-42 |

Equations solver categories