1/10x+5=-13+1x

Simple and best practice solution for 1/10x+5=-13+1x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/10x+5=-13+1x equation:



1/10x+5=-13+1x
We move all terms to the left:
1/10x+5-(-13+1x)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
We add all the numbers together, and all the variables
1/10x-(x-13)+5=0
We get rid of parentheses
1/10x-x+13+5=0
We multiply all the terms by the denominator
-x*10x+13*10x+5*10x+1=0
Wy multiply elements
-10x^2+130x+50x+1=0
We add all the numbers together, and all the variables
-10x^2+180x+1=0
a = -10; b = 180; c = +1;
Δ = b2-4ac
Δ = 1802-4·(-10)·1
Δ = 32440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32440}=\sqrt{4*8110}=\sqrt{4}*\sqrt{8110}=2\sqrt{8110}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-2\sqrt{8110}}{2*-10}=\frac{-180-2\sqrt{8110}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+2\sqrt{8110}}{2*-10}=\frac{-180+2\sqrt{8110}}{-20} $

See similar equations:

| 4x3+5x=1 | | 23+2x-5x=6 | | 4x+35=15+20 | | 4x+35=15x20 | | 8x-1/9=7 | | 2x-@∞|49=3X-32 | | 5(2y+3)-6(y-1)=29 | | 5-(7x-2)×2=37 | | 3/2x-2x/x+1=-2 | | 6n=480 | | (2x)x=512 | | 5x+x=x+60 | | 3(2p-10)+2(5p-10)=8p+9 | | 2/6a=24 | | 3x+8/6x+1=3 | | x+3x+(3x+13)=62 | | (v+5)+(v+8)+v=46 | | (v+5)+(v-8)+v=46 | | 7x+6=8x-14 | | 4x+5=17–2 | | X*(2x+3)=152 | | 2x+(x/3)=84 | | 3(k+6)=6(5k+3) | | 3-2a=17-4a | | (x+5)+86= | | 8t-t2=0 | | 4(3n+10)=5(2n+8) | | 3x+16=5x–24 | | B) 3x+16=5x–24 | | 8x​ =2 | | 5x+14=5x+8 | | 150=10+20n |

Equations solver categories