1/(2x+1)-1/(3x+1)=3

Simple and best practice solution for 1/(2x+1)-1/(3x+1)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/(2x+1)-1/(3x+1)=3 equation:



1/(2x+1)-1/(3x+1)=3
We move all terms to the left:
1/(2x+1)-1/(3x+1)-(3)=0
Domain of the equation: (2x+1)!=0
We move all terms containing x to the left, all other terms to the right
2x!=-1
x!=-1/2
x!=-1/2
x∈R
Domain of the equation: (3x+1)!=0
We move all terms containing x to the left, all other terms to the right
3x!=-1
x!=-1/3
x!=-1/3
x∈R
We calculate fractions
(1*(3x+1))/((2x+1)*(3x+1))+(-1*(2x+1))/((2x+1)*(3x+1))-3=0
We calculate terms in parentheses: +(1*(3x+1))/((2x+1)*(3x+1)), so:
1*(3x+1))/((2x+1)*(3x+1)
We multiply all the terms by the denominator
1*(3x+1))
Back to the equation:
+(1*(3x+1)))
We calculate terms in parentheses: +(-1*(2x+1))/((2x+1)*(3x+1)), so:
-1*(2x+1))/((2x+1)*(3x+1)
We multiply all the terms by the denominator
-1*(2x+1))
Back to the equation:
+(-1*(2x+1)))

See similar equations:

| 3(x-6)=-48 | | 11x-4/5=8 | | 1/2X+1-1/3x+1=3 | | (1/(2x+1))/(1/(3x+1))=3 | | x/9+9=1 | | 18=3(2y-4) | | 5(3w+1)=-9 | | 5(3w+1)=-3 | | 3^(2*x)-2^(2*x)+0.5^(1-2*x)=0 | | 3^(2*x)-2^(2*x)+(5/10)^(1-2*x)=0 | | z=8-3 | | 6r+7=20 | | (1+r)^7-8r-1=0 | | 8x^2-23x+17=-8x+3 | | 3^(2*x)-(2^(2*x)+0.5(1-2*x))=0 | | 3^(2*x)-(2^(2*x)+(5/10)^(1-2*x))=0 | | 79-3x^2-8x=5 | | 4+x=x-2 | | 1/2x^2-5x-1=0 | | 3x^2+56x+320=0 | | X^5-165x+504=0 | | 8(x−10)=40 | | 4(3w+2)-5(6w-1)=2(w-8)-6 | | y=24/5 | | 126=n(36+3n-3) | | y=24/0,5 | | 10m=23×5 | | 6415=6480x^-1,548 | | 3x+2=4x+4= | | 5832=6480x^-1,548 | | 3(3s+2)=87 | | Xx7=49 |

Equations solver categories