1/(2x)-2/(3x)=-3/4

Simple and best practice solution for 1/(2x)-2/(3x)=-3/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/(2x)-2/(3x)=-3/4 equation:



1/(2x)-2/(3x)=-3/4
We move all terms to the left:
1/(2x)-2/(3x)-(-3/4)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We get rid of parentheses
1/2x-2/3x+3/4=0
We calculate fractions
54x^2/96x^2+48x/96x^2+(-64x)/96x^2=0
We multiply all the terms by the denominator
54x^2+48x+(-64x)=0
We get rid of parentheses
54x^2+48x-64x=0
We add all the numbers together, and all the variables
54x^2-16x=0
a = 54; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·54·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*54}=\frac{0}{108} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*54}=\frac{32}{108} =8/27 $

See similar equations:

| 1/(2x)-2/(3x)=(-3/4) | | 0.5 | | 1160+22x=1900=15x | | -5(-7+4p)=11-8p | | 1/11c=99 | | 33.2=b/7 | | i+17=19 | | 2(6a+5)=2(35) | | 2(6a+5)=2(35)) | | (200x.04)(5)=x | | x/0.4=100 | | 3041-w=2975 | | 5x+13=84 | | 150.72=3.14*2*2*h | | 3(3h+-10)=2(2h+5) | | -8+4y=y–6+3y–2 | | 78.8=b/7 | | 4x+54+9=180 | | 3x+5+2x+20=180 | | 5x1-9x3=32 | | 5n–2=23 | | x+63=10 | | 3/(x)+2=4/(5x) | | 6+x=(23−x)−(17−2x) | | 3(-2x+8-3)/5+17=20 | | x=0.8*x+200 | | 1/2(2x-1)=7-3x/2 | | 9x2+48x=0 | | 3/5·k=2/3 | | 3-4c=-4c+3 | | 0.2/c-0.7=7.8 | | 3/5=c/30 |

Equations solver categories