1.5x+10=1/4x+54

Simple and best practice solution for 1.5x+10=1/4x+54 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1.5x+10=1/4x+54 equation:



1.5x+10=1/4x+54
We move all terms to the left:
1.5x+10-(1/4x+54)=0
Domain of the equation: 4x+54)!=0
x∈R
We get rid of parentheses
1.5x-1/4x-54+10=0
We multiply all the terms by the denominator
(1.5x)*4x-54*4x+10*4x-1=0
We add all the numbers together, and all the variables
(+1.5x)*4x-54*4x+10*4x-1=0
We multiply parentheses
4x^2-54*4x+10*4x-1=0
Wy multiply elements
4x^2-216x+40x-1=0
We add all the numbers together, and all the variables
4x^2-176x-1=0
a = 4; b = -176; c = -1;
Δ = b2-4ac
Δ = -1762-4·4·(-1)
Δ = 30992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{30992}=\sqrt{16*1937}=\sqrt{16}*\sqrt{1937}=4\sqrt{1937}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-176)-4\sqrt{1937}}{2*4}=\frac{176-4\sqrt{1937}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-176)+4\sqrt{1937}}{2*4}=\frac{176+4\sqrt{1937}}{8} $

See similar equations:

| 60+65+x=180 | | 2(8x-2)=32-2x | | 0/5f+5=12 | | k/8-56=63 | | (2x+27)=(3x+17) | | 8x-2=2(32-2x) | | x-7.6=-4.1 | | 0=-x^{2}+24x+180 | | 49,3.5x=49 | | f-61/4=7 | | 10w-50=7w+4 | | 8x-2=32-2x | | 3*(x*x)=12 | | 15y*10=155 | | 1-5n=n | | 2(x-1)+1=13 | | s-40=-17 | | s-40=-7 | | 5(2x+20)=5x+50 | | m-92/3=2 | | 5x-4/2=2x | | 10x-3-2x=4 | | 3(x-3)-7=5(x+2) | | 0.5x+7=5 8 | | 7-12t+2(2t-1)=2(2t+1) | | b=9b-88 | | 2(16-x)=9x-23 | | 4(x+5)=2x+20 | | 16-x=2(9x-23) | | 5(2x+9)+2(x11)=3(3x+4)+46 | | 2x+15=5x-75 | | 1/3x-1=1/6x+7 |

Equations solver categories