1.500=(800-100x)x

Simple and best practice solution for 1.500=(800-100x)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1.500=(800-100x)x equation:



1.500=(800-100x)x
We move all terms to the left:
1.500-((800-100x)x)=0
We add all the numbers together, and all the variables
-((-100x+800)x)+1.500=0
We add all the numbers together, and all the variables
-((-100x+800)x)+1.5=0
We calculate terms in parentheses: -((-100x+800)x), so:
(-100x+800)x
We multiply parentheses
-100x^2+800x
Back to the equation:
-(-100x^2+800x)
We get rid of parentheses
100x^2-800x+1.5=0
a = 100; b = -800; c = +1.5;
Δ = b2-4ac
Δ = -8002-4·100·1.5
Δ = 639400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{639400}=\sqrt{100*6394}=\sqrt{100}*\sqrt{6394}=10\sqrt{6394}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-800)-10\sqrt{6394}}{2*100}=\frac{800-10\sqrt{6394}}{200} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-800)+10\sqrt{6394}}{2*100}=\frac{800+10\sqrt{6394}}{200} $

See similar equations:

| d/4+17=-3 | | 2x-3x=27x | | 17n+8=104+5n | | 11y+3-6y+28=96 | | 8(x-1)+6(x+2)=90 | | (7x+11)+(2+8x)=90 | | -3x-25=-100 | | 138+3(5x-1)=180 | | 8r+16=96 | | (8x+17)+67=180 | | 2(2x+7)+2(3x-7)=180 | | 5.2=2x-1.2 | | 8(x-1)+6(x+2)=180 | | 39+(5x+11)=90 | | 2(x+5)+122=180 | | 4.6x+2.3=24 | | 2(x-26)+(3x+2)=180 | | 7x+(3x-10)=180 | | 5+1=5-5(x+4)-2x | | 3-6(x+7)=5+4 | | 3-6l=-33 | | -30=2(2x+7) | | -14=7/2m | | -14=8x-46 | | 6-4b=-26 | | -20=10/3y | | 1.5=x+12.5 | | 5(4y-6)-9y=17 | | 15=12u-9u | | 4x-(8-x)=+4 | | 20x+3+83=180 | | -8=0.7k |

Equations solver categories