If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 1.4(1.5x) + 1.4(-2.4y) + (-2.5)(3.0) + (-2.5)(1.5y) = 0 Remove parenthesis around (1.5x) 1.4 * 1.5x + 1.4(-2.4y) + (-2.5)(3.0) + (-2.5)(1.5y) = 0 Multiply 1.4 * 1.5 2.1x + 1.4(-2.4y) + (-2.5)(3.0) + (-2.5)(1.5y) = 0 Remove parenthesis around (-2.4y) 2.1x + 1.4 * -2.4y + (-2.5)(3.0) + (-2.5)(1.5y) = 0 Multiply 1.4 * -2.4 2.1x + -3.36y + (-2.5)(3.0) + (-2.5)(1.5y) = 0 Multiply -2.5 * 3.0 2.1x + -3.36y + -7.5 + (-2.5)(1.5y) = 0 Remove parenthesis around (1.5y) 2.1x + -3.36y + -7.5 + -2.5 * 1.5y = 0 Multiply -2.5 * 1.5 2.1x + -3.36y + -7.5 + -3.75y = 0 Reorder the terms: -7.5 + 2.1x + -3.36y + -3.75y = 0 Combine like terms: -3.36y + -3.75y = -7.11y -7.5 + 2.1x + -7.11y = 0 Solving -7.5 + 2.1x + -7.11y = 0 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '7.5' to each side of the equation. -7.5 + 2.1x + 7.5 + -7.11y = 0 + 7.5 Reorder the terms: -7.5 + 7.5 + 2.1x + -7.11y = 0 + 7.5 Combine like terms: -7.5 + 7.5 = 0.0 0.0 + 2.1x + -7.11y = 0 + 7.5 2.1x + -7.11y = 0 + 7.5 Combine like terms: 0 + 7.5 = 7.5 2.1x + -7.11y = 7.5 Add '7.11y' to each side of the equation. 2.1x + -7.11y + 7.11y = 7.5 + 7.11y Combine like terms: -7.11y + 7.11y = 0.00 2.1x + 0.00 = 7.5 + 7.11y 2.1x = 7.5 + 7.11y Divide each side by '2.1'. x = 3.571428571 + 3.385714286y Simplifying x = 3.571428571 + 3.385714286y
| (x^2+2xy)(x^2-2xy)= | | w+1/8w-6/5=1/4w-3/20 | | 10=17x | | 5x^3+55x^2+10x= | | v-0.66v+0.75=1.5v-1.88 | | 5x*1=11 | | 9x^2-16x-11=0 | | -5x-3y-9=0 | | y=4sec(6x) | | -21=3x-1 | | -0.33w+0.85=3.5w-1.5 | | 3x+5+3x+x=6000 | | 4y+x^2=16 | | 10x-6=2x+6 | | -1/3w+5/6=7/2w-3/2 | | 5+77x=44x+17 | | -9+4z-2=-5z-5+1 | | n*31=93 | | 12x+15=8x+40-18 | | 12x^4y+6x^3-12x^3y=0 | | 12x^4+6x^3-12x^3y=0 | | k+(k+2)=(k+k)+2 | | 285.9912=2*3.14*r^2+2*3.14r*5.3 | | 3n+2=-3 | | -7t=-56 | | 3x-4(9-2x)=8 | | x-2+5=40 | | 58=2x+3y+12z | | 18x-9=120 | | 3x-160+2x=-20 | | 23x+19=-3 | | 6(-2a+7)=40 |