1.3k+80=1/2k+120

Simple and best practice solution for 1.3k+80=1/2k+120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1.3k+80=1/2k+120 equation:



1.3k+80=1/2k+120
We move all terms to the left:
1.3k+80-(1/2k+120)=0
Domain of the equation: 2k+120)!=0
k∈R
We get rid of parentheses
1.3k-1/2k-120+80=0
We multiply all the terms by the denominator
(1.3k)*2k-120*2k+80*2k-1=0
We add all the numbers together, and all the variables
(+1.3k)*2k-120*2k+80*2k-1=0
We multiply parentheses
2k^2-120*2k+80*2k-1=0
Wy multiply elements
2k^2-240k+160k-1=0
We add all the numbers together, and all the variables
2k^2-80k-1=0
a = 2; b = -80; c = -1;
Δ = b2-4ac
Δ = -802-4·2·(-1)
Δ = 6408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6408}=\sqrt{36*178}=\sqrt{36}*\sqrt{178}=6\sqrt{178}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-6\sqrt{178}}{2*2}=\frac{80-6\sqrt{178}}{4} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+6\sqrt{178}}{2*2}=\frac{80+6\sqrt{178}}{4} $

See similar equations:

| -19x-14=-28 | | d-7=77 | | 3m=7=16 | | m+66=87 | | j-1/2=5/8 | | 33=5r+3 | | r+12=92 | | s=9+10 | | x-2x=20-5x+4 | | 12x-8=8x-6 | | -12=-24+j | | 18=x. | | 73.6=59.2+8p | | X2-20x+36=0 | | 11-8=c | | d+1=15 | | 3/9.665-6/x=21 | | 6(x−6)=6x+36 | | 8v-4(v+8))=8 | | -17x-2=-7x+17x | | 5.50t−110=275 | | 275=5.50t−110 | | 4=-2(x-2+3) | | x=1.3(1.2x-4.6)+1.5 | | 9x+5=31 | | w3w3w=56 | | 5+7a=26 | | 22973x35.39=8131 | | 22973x35.39=x | | 4(6+2x=0 | | 9w3-6w3=18 | | (5/7)*h=(1/2) |

Equations solver categories