1.0497=0.01624+294.8782*x-6979.54588*x2

Simple and best practice solution for 1.0497=0.01624+294.8782*x-6979.54588*x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1.0497=0.01624+294.8782*x-6979.54588*x2 equation:



1.0497=0.01624+294.8782x-6979.54588x^2
We move all terms to the left:
1.0497-(0.01624+294.8782x-6979.54588x^2)=0
We get rid of parentheses
6979.54588x^2-294.8782x-0.01624+1.0497=0
We add all the numbers together, and all the variables
6979.54588x^2-294.8782x+1.03346=0
a = 6979.54588; b = -294.8782; c = +1.03346;
Δ = b2-4ac
Δ = -294.87822-4·6979.54588·1.03346
Δ = 58100.826894661
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-294.8782)-\sqrt{58100.826894661}}{2*6979.54588}=\frac{294.8782-\sqrt{58100.826894661}}{13959.09176} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-294.8782)+\sqrt{58100.826894661}}{2*6979.54588}=\frac{294.8782+\sqrt{58100.826894661}}{13959.09176} $

See similar equations:

| 5x-5.86=-2.01 | | -1=-4(3x+2)+13x= | | 7(x–1)–5(2x+2)=49 | | 3x+12-x=8x-24 | | -5(x-16)=-45 | | 5(x+8)=-7 | | x+4(3)=16 | | 2.422=0.01624+294.8782*x-6979.54588*x2 | | n=22,2n+9= | | 9^x+3=30 | | 2x+21=3x+7 | | 25x+8=12 | | 1/3(5x-4)=3x+8 | | 5n-2n=28+5 | | x/6+6=4 | | 5y(3−y)(4y+1)2=0 | | 500(1.05)^x=44550 | | 5x-4=1/3(3x+8) | | x/4=10=-3 | | 0=1000-260x+12x^2 | | 2x-10=3x-22 | | x-2-15=35 | | 1.5x*x=864 | | 3x=4=x-10 | | -4/15n+⅔=2/5n | | X2+120=22x-1 | | 3(40)-20+2(40)=y | | 3/8m+⅞=2m | | 12x+7=8x-53 | | -26-4n=-(8n+8)-6 | | 4=3x-15 | | (4x+4)+(6x–4)=180 |

Equations solver categories