1-3(x+3)=2(3x-4)9x

Simple and best practice solution for 1-3(x+3)=2(3x-4)9x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1-3(x+3)=2(3x-4)9x equation:



1-3(x+3)=2(3x-4)9x
We move all terms to the left:
1-3(x+3)-(2(3x-4)9x)=0
We multiply parentheses
-3x-(2(3x-4)9x)-9+1=0
We calculate terms in parentheses: -(2(3x-4)9x), so:
2(3x-4)9x
We multiply parentheses
54x^2-72x
Back to the equation:
-(54x^2-72x)
We add all the numbers together, and all the variables
-3x-(54x^2-72x)-8=0
We get rid of parentheses
-54x^2-3x+72x-8=0
We add all the numbers together, and all the variables
-54x^2+69x-8=0
a = -54; b = 69; c = -8;
Δ = b2-4ac
Δ = 692-4·(-54)·(-8)
Δ = 3033
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3033}=\sqrt{9*337}=\sqrt{9}*\sqrt{337}=3\sqrt{337}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(69)-3\sqrt{337}}{2*-54}=\frac{-69-3\sqrt{337}}{-108} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(69)+3\sqrt{337}}{2*-54}=\frac{-69+3\sqrt{337}}{-108} $

See similar equations:

| 1t-15=30 | | 3n-6=-3+2n | | x/4-14=-7 | | -5m+15=-20 | | 8=s+43/10 | | (3xx2x+20)=180 | | 4x+12+30=180 | | -9=8+y/10 | | x/16=55/40= | | 2(u-32)=50 | | Y=1.6x+47 | | 84=7(c+5) | | h=-9.8+254 | | (2xx3x+50)=180 | | 1x+12=3x+0 | | 5y-4-2y+4=2 | | 4-w=4 | | 6x^2-2x-57=0 | | 2(4x-3)-8=4+2+ | | 7j-10=39 | | 7x+(-x3)=-28 | | 6/6x60/1= | | X+20y=-20 | | 2x-14=-64 | | 5/2x=8/(3x-6) | | 5x+3=2x+2=90 | | m/3+13=15 | | 19=10+3h | | s=(14-2)*180 | | 12x+9=–15x | | q+28/10=6 | | 3(1.5x+9)=-6 |

Equations solver categories