If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 1 + ln(x + 3) + ln(x + -2) = ln(x + 1) Reorder the terms: 1 + ln(3 + x) + ln(x + -2) = ln(x + 1) 1 + (3 * ln + x * ln) + ln(x + -2) = ln(x + 1) 1 + (3ln + lnx) + ln(x + -2) = ln(x + 1) Reorder the terms: 1 + 3ln + lnx + ln(-2 + x) = ln(x + 1) 1 + 3ln + lnx + (-2 * ln + x * ln) = ln(x + 1) 1 + 3ln + lnx + (-2ln + lnx) = ln(x + 1) Reorder the terms: 1 + 3ln + -2ln + lnx + lnx = ln(x + 1) Combine like terms: 3ln + -2ln = 1ln 1 + 1ln + lnx + lnx = ln(x + 1) Combine like terms: lnx + lnx = 2lnx 1 + 1ln + 2lnx = ln(x + 1) Reorder the terms: 1 + 1ln + 2lnx = ln(1 + x) 1 + 1ln + 2lnx = (1 * ln + x * ln) 1 + 1ln + 2lnx = (1ln + lnx) Add '-1ln' to each side of the equation. 1 + 1ln + -1ln + 2lnx = 1ln + -1ln + lnx Combine like terms: 1ln + -1ln = 0 1 + 0 + 2lnx = 1ln + -1ln + lnx 1 + 2lnx = 1ln + -1ln + lnx Combine like terms: 1ln + -1ln = 0 1 + 2lnx = 0 + lnx 1 + 2lnx = lnx Solving 1 + 2lnx = lnx Solving for variable 'l'. Move all terms containing l to the left, all other terms to the right. Add '-1lnx' to each side of the equation. 1 + 2lnx + -1lnx = lnx + -1lnx Combine like terms: 2lnx + -1lnx = 1lnx 1 + 1lnx = lnx + -1lnx Combine like terms: lnx + -1lnx = 0 1 + 1lnx = 0 Add '-1' to each side of the equation. 1 + -1 + 1lnx = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 1lnx = 0 + -1 1lnx = 0 + -1 Combine like terms: 0 + -1 = -1 1lnx = -1 Divide each side by '1nx'. l = -1n-1x-1 Simplifying l = -1n-1x-1
| m=1/2=(-2,-8) | | (y+6)-(7y+5)= | | 10y-4x=90 | | 7x+4(2x-6)=0 | | 0=3.484x+.042 | | f(x)=x^2+13*x-30 | | (x+2)(x-1)=4 | | -2x-8-22-x=2 | | 10+2x=7-10 | | 3(5y-7)-4(y-1)= | | y-2=3/2(x-7) | | 13c+9-13c= | | 4x+43=7x-5 | | V=3.14r^2h/3 | | 21494=35000*x^3 | | 8-11x-6-4x=5 | | y=5x^2-60x-25 | | 10c+4=6(c-3) | | 24x^2+62X-14=0 | | 7x=31.5 | | 7x-17=x | | -16x^2+54x+2=62x | | 16+d=7 | | .058=1.1872x+.0154 | | 8x-16y=96 | | 9-3/x=4 | | 7x+15=9x-5 | | 2x+4y=672 | | 16/9*4/3 | | -(-y-6z-4)= | | 21x+34=2.44 | | 8y-26=6(y-4) |