1+2n(n-2)=-3(1-8n)

Simple and best practice solution for 1+2n(n-2)=-3(1-8n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1+2n(n-2)=-3(1-8n) equation:



1+2n(n-2)=-3(1-8n)
We move all terms to the left:
1+2n(n-2)-(-3(1-8n))=0
We add all the numbers together, and all the variables
2n(n-2)-(-3(-8n+1))+1=0
We multiply parentheses
2n^2-4n-(-3(-8n+1))+1=0
We calculate terms in parentheses: -(-3(-8n+1)), so:
-3(-8n+1)
We multiply parentheses
24n-3
Back to the equation:
-(24n-3)
We get rid of parentheses
2n^2-4n-24n+3+1=0
We add all the numbers together, and all the variables
2n^2-28n+4=0
a = 2; b = -28; c = +4;
Δ = b2-4ac
Δ = -282-4·2·4
Δ = 752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{752}=\sqrt{16*47}=\sqrt{16}*\sqrt{47}=4\sqrt{47}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{47}}{2*2}=\frac{28-4\sqrt{47}}{4} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{47}}{2*2}=\frac{28+4\sqrt{47}}{4} $

See similar equations:

| 2x^2=-11x+40 | | 1x-1x+1x=0 | | 14z+8z-7=180 | | 5x+10=3+10x | | 3.5g+5-2.7g=12.7 | | x+2x+3X=0 | | p+1=5 | | 4x+10=380 | | x/5=4+13 | | 4x+10=108 | | 6v=2=9v+14 | | 9x-12+5x=24 | | 39x+7=45 | | 12g+3=7g+18 | | -(3x-4)=6x+3(3x-2) | | 11+7x=7x-14 | | 8m=10m | | 2x-2x-3+3x=0 | | 4x+7.5=2x+16.5 | | 1/2x=2/8 | | 4x-10=180/2 | | 6x-12+5x= | | 6(x+4)-2x=20 | | (-5+4x)(-15+3x)=0 | | 162=24t-5t2 | | a/20=35/100 | | 2x-64=2x+44 | | 0.63+x=0.96 | | 3x+4/2=9.4 | | 15/w=50/100 | | 15y=3y | | 6+1/5x=8+7/10x |

Equations solver categories