If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+2+3+4+n=n(n+1)/n
We move all terms to the left:
1+2+3+4+n-(n(n+1)/n)=0
Domain of the equation: n)!=0We add all the numbers together, and all the variables
n!=0/1
n!=0
n∈R
n-(n(n+1)/n)+10=0
We multiply all the terms by the denominator
n*n)-(n(n+1)+10*n)=0
Wy multiply elements
n^2+10n=0
a = 1; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·1·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*1}=\frac{-20}{2} =-10 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*1}=\frac{0}{2} =0 $
| x–2=3x–5 | | 1.5(3x+2)=3x+0.8 | | 2.5(3x+3)=3x+1.5 | | 3=9-a | | 3x-2-2=4x-7 | | 3x2-2=4x-7 | | 18=c/4 | | 70=12j | | 3x+4=6+(-5x) | | 3x+4=6*(-5x) | | x^2+x–30=0. | | 2x^2/(x+1)^2-5x/x+1+3=0 | | 2(w+5)-3=15 | | 4k^2-24k=0 | | 4-6x+12=4x | | 41x-40x=3 | | 3x+10+3x+14=24+6x | | 6x−4=3x+2 | | 2(4n-9)+n=0 | | x=45/6=9 | | 2(4n-9)=n=0 | | 16x²-24x-1=0 | | N.14d=42 | | m=6m+30 | | 61/9=35/7+p | | 180-(x+22)=2x-13 | | 10x^-3x•10x=1/10 | | x(4+x)+20=x^2−(x−5) | | (2x+6)+(9x+7)+(9x+7)=180 | | (2x+6)+2(9x+7)=180 | | 0.2(x+20)-0.06(x-50)=0 | | 3x+13=57* |