1+0.4(x-2)=3/5x

Simple and best practice solution for 1+0.4(x-2)=3/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1+0.4(x-2)=3/5x equation:



1+0.4(x-2)=3/5x
We move all terms to the left:
1+0.4(x-2)-(3/5x)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
0.4(x-2)-(+3/5x)+1=0
We multiply parentheses
0.4x-(+3/5x)-0.8+1=0
We get rid of parentheses
0.4x-3/5x-0.8+1=0
We multiply all the terms by the denominator
(0.4x)*5x-(0.8)*5x+1*5x-3=0
We add all the numbers together, and all the variables
(+0.4x)*5x-(0.8)*5x+1*5x-3=0
We multiply parentheses
0x^2-4x+1*5x-3=0
Wy multiply elements
0x^2-4x+5x-3=0
We add all the numbers together, and all the variables
x^2+x-3=0
a = 1; b = 1; c = -3;
Δ = b2-4ac
Δ = 12-4·1·(-3)
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{13}}{2*1}=\frac{-1-\sqrt{13}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{13}}{2*1}=\frac{-1+\sqrt{13}}{2} $

See similar equations:

| 9y-3=-3(3y+25) | | 9y-3=-3(3y+35) | | 12n+16=112 | | 9k+-10k−14k−-16k=19 | | (x+121)+(x+81)=180 | | 12x+8=8x+8 | | -100=-2(7a+8) | | 11x-7=5x+5 | | 10t^2=60t | | 5-r=1 | | 5x-24=45 | | (r+5/3)=(-16) | | 19a-5+a+5=180 | | 10=3x÷13 | | 2x=-2^7+1 | | 3.3x=15.4 | | 5y*8=6 | | -3j-(-42)=72 | | 12t–10=14t+2t= | | 12t–10=14t+2 | | 12(3x+8)=144 | | 5+a/16=24 | | 44=2(4x+2) | | 49t^2-160t+850=0 | | -2x+29=21 | | 49t^2-160t+50=0 | | 4x+13=2(4x+3)+3 | | 17-3q=94 | | 3x+25=4-4x | | 5(x+3)=-5x-5 | | 37=2+5d | | 4(x+3)-5=x+16 |

Equations solver categories