1*1+4*4=c*c

Simple and best practice solution for 1*1+4*4=c*c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1*1+4*4=c*c equation:



1*1+4*4=c*c
We move all terms to the left:
1*1+4*4-(c*c)=0
We add all the numbers together, and all the variables
-(+c*c)+1*1+4*4=0
We add all the numbers together, and all the variables
-(+c*c)+17=0
We get rid of parentheses
-c*c+17=0
Wy multiply elements
-1c^2+17=0
a = -1; b = 0; c = +17;
Δ = b2-4ac
Δ = 02-4·(-1)·17
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{17}}{2*-1}=\frac{0-2\sqrt{17}}{-2} =-\frac{2\sqrt{17}}{-2} =-\frac{\sqrt{17}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{17}}{2*-1}=\frac{0+2\sqrt{17}}{-2} =\frac{2\sqrt{17}}{-2} =\frac{\sqrt{17}}{-1} $

See similar equations:

| 9m-15=93 | | 35(2x+10)=2 | | 2=6f–3–f | | 15+4x-(+9)=18 | | 5+4x-9=18 | | 3w-7=22 | | X=-100+2y | | 3x-6=58 | | 4+6x=11+3x | | 4s=2s−2+3s | | 100+(x+12)=x | | 7-1/^x2=3 | | h+2=4 | | 0=2o-6o | | 3x=167 | | 2(-3)-4(x-2)=3x+17 | | 11+3x-7=25 | | 3x+23x-10=16 | | 14t-4-16t=-16 | | ((60-x)*12)+(x*8)=600 | | 2^(x-1)=1/64 | | -5x-(6-4(x-3)-36=0 | | -19x-12=-183 | | -4(2x+9)+3x=6-4(x+3 | | -19x-12=-188 | | (M+5)(m-9)(m+1)=0 | | 1^7x1^-8=1 | | 7a+17=2a+17 | | -15x-13=-88 | | 2(x-4)^4-17(x+4)^2-9=0 | | d/8+3=8 | | 7^n=343 |

Equations solver categories