If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0a^2-10=630
We move all terms to the left:
0a^2-10-(630)=0
We add all the numbers together, and all the variables
a^2-640=0
a = 1; b = 0; c = -640;
Δ = b2-4ac
Δ = 02-4·1·(-640)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*1}=\frac{0-16\sqrt{10}}{2} =-\frac{16\sqrt{10}}{2} =-8\sqrt{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*1}=\frac{0+16\sqrt{10}}{2} =\frac{16\sqrt{10}}{2} =8\sqrt{10} $
| 12x-12=2x+8 | | 7x/10=18 | | 100=60+1,1x | | 6+4t=-70 | | 18x+30-13x=180 | | 40=3(x-2)+4 | | 7(9+x)=48 | | 30x/3-9=3x+123 | | (4+-3z)(4+-1z)=0 | | (x+6)/3=x+4 | | 114+3y=180 | | 2(v-51)=30 | | 18z+49-63z=0 | | -3x-2x=1=13 | | (-14)=2y | | 8x+12=4(3+4x) | | 9x=-84 | | (15+y)y=10^2 | | 5(c+4/6)+6=50 | | 24-5b=9 | | 4+5(x+2)=7- | | 10x-17=3x+18 | | 5x+3(x−1)=10x−2x | | 12=g/11+10 | | 64x-6=3x | | 4+5p=74 | | 3(5x+4)+5x=8 | | -64=32x+96 | | 3/4x-19=38 | | 6b+10=28 | | 90/100=x/69 | | 20x^+37x-18=0 |