0=t(30.0-4.9t)

Simple and best practice solution for 0=t(30.0-4.9t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=t(30.0-4.9t) equation:



0=t(30.0-4.9t)
We move all terms to the left:
0-(t(30.0-4.9t))=0
We add all the numbers together, and all the variables
-(t(-4.9t+30))+0=0
We add all the numbers together, and all the variables
-(t(-4.9t+30))=0
We calculate terms in parentheses: -(t(-4.9t+30)), so:
t(-4.9t+30)
We multiply parentheses
-4t^2+30t
Back to the equation:
-(-4t^2+30t)
We get rid of parentheses
4t^2-30t=0
a = 4; b = -30; c = 0;
Δ = b2-4ac
Δ = -302-4·4·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{900}=30$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-30}{2*4}=\frac{0}{8} =0 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+30}{2*4}=\frac{60}{8} =7+1/2 $

See similar equations:

| 5000=25x-(380+1x) | | x3+2=345 | | P=-x2+30x-200 | | 9h=26=64 | | 10x-15+8=6x-19 | | 2h—16=20 | | Xx4+3=31 | | 0.65x+0.05(6-x)=0.10(27) | | 6x-5=4x-55 | | (N+2)=2n+7 | | -5(x-7)+2=-13 | | -5×(x+6)=-3x | | 11=7/x | | 13=7/x | | 4(x-2)÷6=2(x+7)÷12 | | 0=2∗3.14^2∗(x/2)^2∗(35+x/2)-1467.8569 | | 5*(3x-4)=13x | | 0=2∗3.14^2∗(x/2)^2∗(70/2+x/2)-1467.8569 | | 1467.85=2∗3.14^2∗(x/2)^2∗(70/2+x/2) | | u-3+2u-8=5 | | 8*(2x-3)=10x | | 4*(5x-6)=18x | | -13-10q-13=-1+5(-2q+20) | | 6m-6=6m+-33 | | 163=48-v | | -19+8(-14d+5)=7(-16d+3) | | 2(-10z+13)=17-20z | | -14b=7(-b-7) | | -5(u-7)+2=-13 | | -16r-12-16r=3(-16r+13)+16r | | 4(-9n+20)-12n=3(-16n+12) | | 2u-1=u+4 |

Equations solver categories