0=t(3.85-4.905t)

Simple and best practice solution for 0=t(3.85-4.905t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=t(3.85-4.905t) equation:



0=t(3.85-4.905t)
We move all terms to the left:
0-(t(3.85-4.905t))=0
We add all the numbers together, and all the variables
-(t(-4.905t+3.85))+0=0
We add all the numbers together, and all the variables
-(t(-4.905t+3.85))=0
We calculate terms in parentheses: -(t(-4.905t+3.85)), so:
t(-4.905t+3.85)
We multiply parentheses
-4t^2+3.85t
Back to the equation:
-(-4t^2+3.85t)
We get rid of parentheses
4t^2-3.85t=0
a = 4; b = -3.85; c = 0;
Δ = b2-4ac
Δ = -3.852-4·4·0
Δ = 14.8225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3.85)-\sqrt{14.8225}}{2*4}=\frac{3.85-\sqrt{14.8225}}{8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3.85)+\sqrt{14.8225}}{2*4}=\frac{3.85+\sqrt{14.8225}}{8} $

See similar equations:

| x^2-80x+1200=0 | | (-9b)+(-39)=60 | | 2(t+27)=98 | | -2(p-5)+7p=-5= | | 3(4-2x)=4-(6-8) | | (4/3)y+17=-7 | | (h/6)-3=2 | | 2=11+3(m+3)= | | (-2)=(-5)+3m | | 90=144+a | | (y/2)-1=2 | | 10=r2 | | 2(-20-9)=3x+20 | | 27c=50 | | 5(k-2)-8k=-34= | | x+(x*0.05)=10,000 | | 4=5.7+h | | |x|+3=2x | | 3(3x-4)=14(32x+56) | | 0.17y+0.09(y+6000)=1580 | | (d/4)-1=3 | | 132=44x | | 132+44x=180 | | 5x+4=164 | | 4x+6=43 | | x+0.9=0.4x-0.3 | | (g/4)-(-13)=17 | | 10+7w=765 | | 2j+(4)=12 | | (z/4)-1=2 | | 7n+2n=3n-7n+8 | | 3+2x-5x=22+6x |

Equations solver categories