0=n(n+1)(n+2)(n+3)

Simple and best practice solution for 0=n(n+1)(n+2)(n+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=n(n+1)(n+2)(n+3) equation:


Simplifying
0 = n(n + 1)(n + 2)(n + 3)

Reorder the terms:
0 = n(1 + n)(n + 2)(n + 3)

Reorder the terms:
0 = n(1 + n)(2 + n)(n + 3)

Reorder the terms:
0 = n(1 + n)(2 + n)(3 + n)

Multiply (1 + n) * (2 + n)
0 = n(1(2 + n) + n(2 + n))(3 + n)
0 = n((2 * 1 + n * 1) + n(2 + n))(3 + n)
0 = n((2 + 1n) + n(2 + n))(3 + n)
0 = n(2 + 1n + (2 * n + n * n))(3 + n)
0 = n(2 + 1n + (2n + n2))(3 + n)

Combine like terms: 1n + 2n = 3n
0 = n(2 + 3n + n2)(3 + n)

Multiply (2 + 3n + n2) * (3 + n)
0 = n(2(3 + n) + 3n * (3 + n) + n2(3 + n))
0 = n((3 * 2 + n * 2) + 3n * (3 + n) + n2(3 + n))
0 = n((6 + 2n) + 3n * (3 + n) + n2(3 + n))
0 = n(6 + 2n + (3 * 3n + n * 3n) + n2(3 + n))
0 = n(6 + 2n + (9n + 3n2) + n2(3 + n))
0 = n(6 + 2n + 9n + 3n2 + (3 * n2 + n * n2))
0 = n(6 + 2n + 9n + 3n2 + (3n2 + n3))

Combine like terms: 2n + 9n = 11n
0 = n(6 + 11n + 3n2 + 3n2 + n3)

Combine like terms: 3n2 + 3n2 = 6n2
0 = n(6 + 11n + 6n2 + n3)
0 = (6 * n + 11n * n + 6n2 * n + n3 * n)
0 = (6n + 11n2 + 6n3 + n4)

Solving
0 = 6n + 11n2 + 6n3 + n4

Solving for variable 'n'.
Remove the zero:
-6n + -11n2 + -6n3 + -1n4 = 6n + 11n2 + 6n3 + n4 + -6n + -11n2 + -6n3 + -1n4

Reorder the terms:
-6n + -11n2 + -6n3 + -1n4 = 6n + -6n + 11n2 + -11n2 + 6n3 + -6n3 + n4 + -1n4

Combine like terms: 6n + -6n = 0
-6n + -11n2 + -6n3 + -1n4 = 0 + 11n2 + -11n2 + 6n3 + -6n3 + n4 + -1n4
-6n + -11n2 + -6n3 + -1n4 = 11n2 + -11n2 + 6n3 + -6n3 + n4 + -1n4

Combine like terms: 11n2 + -11n2 = 0
-6n + -11n2 + -6n3 + -1n4 = 0 + 6n3 + -6n3 + n4 + -1n4
-6n + -11n2 + -6n3 + -1n4 = 6n3 + -6n3 + n4 + -1n4

Combine like terms: 6n3 + -6n3 = 0
-6n + -11n2 + -6n3 + -1n4 = 0 + n4 + -1n4
-6n + -11n2 + -6n3 + -1n4 = n4 + -1n4

Combine like terms: n4 + -1n4 = 0
-6n + -11n2 + -6n3 + -1n4 = 0

Factor out the Greatest Common Factor (GCF), '-1n'.
-1n(6 + 11n + 6n2 + n3) = 0

Ignore the factor -1.

Subproblem 1

Set the factor 'n' equal to zero and attempt to solve: Simplifying n = 0 Solving n = 0 Move all terms containing n to the left, all other terms to the right. Simplifying n = 0

Subproblem 2

Set the factor '(6 + 11n + 6n2 + n3)' equal to zero and attempt to solve: Simplifying 6 + 11n + 6n2 + n3 = 0 Solving 6 + 11n + 6n2 + n3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

n = {0}

See similar equations:

| 2r-6=r | | x=2-8(1-6x) | | 12/42=4w/3.6 | | 5x-14=8x-8 | | 9k=3+10k | | 4/x+1=3/x+2 | | (X+2)(x-3)=x^2-1x-9 | | 7x-8x+4=25 | | 8+x(2)=2+5x | | 69+2r=84-3r | | a+2b-12=8 | | X/3-19=8 | | Y=4x^2+20x-6 | | 27y=8y | | 21+4b-29= | | a=3(26)2 | | 9x-(4x+2)=8x-35 | | 7+x(2)=39.70 | | -33/5+(-14/5)=x | | 4(2+2x)=7(x-2) | | 35+x(35)=350 | | 51-6x=-6(2+5x)+2x | | 19x-7-17x+23=-14 | | 9(7*7-3*8)= | | Z=-3z-4 | | -3v+10=40-6v | | 5(6-a)-2(4a+0)=4 | | 8x-11=10x+37 | | 8+23=17 | | 0=4(x-(7-x))-7(x+1) | | 6n-5+8n=9 | | 21x^2+70x+56=0 |

Equations solver categories