If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=5x^2-75.1x+156
We move all terms to the left:
0-(5x^2-75.1x+156)=0
We add all the numbers together, and all the variables
-(5x^2-75.1x+156)=0
We get rid of parentheses
-5x^2+75.1x-156=0
a = -5; b = 75.1; c = -156;
Δ = b2-4ac
Δ = 75.12-4·(-5)·(-156)
Δ = 2520.01
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75.1)-\sqrt{2520.01}}{2*-5}=\frac{-75.1-\sqrt{2520.01}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75.1)+\sqrt{2520.01}}{2*-5}=\frac{-75.1+\sqrt{2520.01}}{-10} $
| 6-2f=-28 | | 2g-6+3g=5(g+10) | | 3*7x-8)=39 | | 3c-75=25+7c | | 16x+2x^2=-14 | | 5f+6-f=4f+9 | | -8=s/4 | | 0.8^x=3 | | 7z×25-11=26.5 | | -3(2e-5)=-2(3e-5)+8 | | 10=7(y-5)-2y | | 4s-8-2s=4 | | 6w=-13 | | 3(2i-6)=-54 | | 5y-12=19 | | 2(d+3)=3(d+2) | | s+ 57= 4 | | 9/x=54.8 | | s+ 5/7= 4 | | 180=(7x-19)+(9x-37) | | 180=(7x-19 | | 3z2-5=180 | | 5+19(n−19)=−4n−11 | | X=(x-6)5-10 | | -2u+5(u+5)=1 | | n+15=7n | | -(c-3)=-2(c+6) | | x-6.8=356.36 | | 2x=-6x= | | f+8=61 | | 3b-5=2b-10 | | -10=-7v+5(v-6) |