0=5+18t+-16t2

Simple and best practice solution for 0=5+18t+-16t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=5+18t+-16t2 equation:



0=5+18t+-16t^2
We move all terms to the left:
0-(5+18t+-16t^2)=0
We add all the numbers together, and all the variables
-(5+18t+-16t^2)=0
We use the square of the difference formula
-(5+18t-16t^2)=0
We get rid of parentheses
16t^2-18t-5=0
a = 16; b = -18; c = -5;
Δ = b2-4ac
Δ = -182-4·16·(-5)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{161}}{2*16}=\frac{18-2\sqrt{161}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{161}}{2*16}=\frac{18+2\sqrt{161}}{32} $

See similar equations:

| 8x-12=23 | | 122=t-203 | | x^2=3x2=3 | | 1}{3}y6=-11 | | 11+6k=2/4 | | x-9/2=13 | | 1=7/10w | | (x-π)*(2x+1)*(7-x)*(x+2)=0 | | 3/2x=+5=9 | | 2^2x+1-9(2^x)+4=0. | | (x-π)*(2x+1)*(7-x)*(x+√2)=0 | | {1}{3}y-6=-11 | | .5=(70.88-x)/70.88 | | (a-π)·(2a+1)·(7-a)·(a+√2)=0 | | 2x+302x-10=180 | | 5n-3=2n | | 7c-8=56-c | | 56/x=5 | | 4x2+7x−11=3x | | 50=(70.88-x)/70.88 | | –14x+–5=–19 | | x/3/4/6=0.5 | | N-247=-(4x28) | | 10-4x=-2x-2 | | 2x-3-2x=7 | | 2x+86+8=x−4 | | x-15+2x-25x3x=360 | | +6=-4;n= | | 4x+6+5x+1=11 | | -5d-5=30;d | | 5*5*5-10*10=x(8-2)+2x-3x | | 3x-14=64 |

Equations solver categories