If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=2x^2+19x+35
We move all terms to the left:
0-(2x^2+19x+35)=0
We add all the numbers together, and all the variables
-(2x^2+19x+35)=0
We get rid of parentheses
-2x^2-19x-35=0
a = -2; b = -19; c = -35;
Δ = b2-4ac
Δ = -192-4·(-2)·(-35)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-9}{2*-2}=\frac{10}{-4} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+9}{2*-2}=\frac{28}{-4} =-7 $
| 6a-5=-8+7a | | 0=x^2+40x+500 | | 4(2x-1)=-4(x+3) | | 4k-8=48 | | m+2.8=(-4.9=-7.11) | | m+2.8=(-4.9=-7.11 | | 8^x=128 | | n+n+1+n+2+n+3n+4+n+5=90 | | F(5)=2x^2+4x+1 | | 4.4(x+2)-7=4.4x+1.8 | | 1/2=2/5c=-3 | | m×2.8-4.9=7.11 | | 3(x-3)=3x+9 | | 7(x-4)+3=21 | | n/5-3/n=1/5 | | (8y+42)=(5y-9)+90 | | -.02x+500=0 | | 53x=27+54x | | (6x-25)+(12x-43)=180 | | -5(r+6)=-99 | | -1/3d=-12 | | -x+4+7x=-2+3x+6 | | -6(7-×)=10(x+3)-23 | | (8y+42)+(5y-9)=180 | | 40x^2+20x=-24 | | X^2+y^2=17X+4y=0 | | 12=6/5x | | 2b+b=-6(b-7)+7(2b-1) | | 2/3x+1=3/4 | | .1.2+2.5x=2.7x+0.7 | | (3x-2)^=16x^ | | 3(x-2)=2(x-6 |