0=16+4t(t-6)

Simple and best practice solution for 0=16+4t(t-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=16+4t(t-6) equation:



0=16+4t(t-6)
We move all terms to the left:
0-(16+4t(t-6))=0
We add all the numbers together, and all the variables
-(16+4t(t-6))=0
We calculate terms in parentheses: -(16+4t(t-6)), so:
16+4t(t-6)
determiningTheFunctionDomain 4t(t-6)+16
We multiply parentheses
4t^2-24t+16
Back to the equation:
-(4t^2-24t+16)
We get rid of parentheses
-4t^2+24t-16=0
a = -4; b = 24; c = -16;
Δ = b2-4ac
Δ = 242-4·(-4)·(-16)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{5}}{2*-4}=\frac{-24-8\sqrt{5}}{-8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{5}}{2*-4}=\frac{-24+8\sqrt{5}}{-8} $

See similar equations:

| 4y=92y= | | 8^{x+2}=16 | | 0=16+4(t-6t) | | 42+z=55 | | b/4=2.4 | | 1.3x=−5.2 | | x+7x/6=52 | | 11+2x​ =5 | | 5(x3)+57=-2x | | 42+z=25 | | -1+x/6=9 | | x+x-24=58 | | x-10+25=90 | | −1+6x​ =9 | | $-15=3y-18$ | | 3+b=25 | | k^2-2k-83=-3 | | 6+7n–8n=+4n | | -13x–7x+4x+x= | | p^2-4p-68=6 | | -3+4p=-3 | | v^2+4v-58=6 | | -41d=205 | | d3=1 | | 90-6r+30= | | 180=x(x+15)+39 | | -20x-5=25 | | v^2-4v-66=-6 | | -3-7x=8 | | -2+4d=8 | | n^2-6n-79=-4 | | 5x+3(x-20)=4x-20 |

Equations solver categories