0=-4.9(x+3)(x-9)

Simple and best practice solution for 0=-4.9(x+3)(x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-4.9(x+3)(x-9) equation:



0=-4.9(x+3)(x-9)
We move all terms to the left:
0-(-4.9(x+3)(x-9))=0
We add all the numbers together, and all the variables
-(-4.9(x+3)(x-9))=0
We multiply parentheses ..
-(-4.9(+x^2-9x+3x-27))=0
We calculate terms in parentheses: -(-4.9(+x^2-9x+3x-27)), so:
-4.9(+x^2-9x+3x-27)
We multiply parentheses
-4.9x^2+44.1x-14.7x+132.3
We add all the numbers together, and all the variables
-4.9x^2+29.4x+132.3
Back to the equation:
-(-4.9x^2+29.4x+132.3)
We get rid of parentheses
4.9x^2-29.4x-132.3=0
a = 4.9; b = -29.4; c = -132.3;
Δ = b2-4ac
Δ = -29.42-4·4.9·(-132.3)
Δ = 3457.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29.4)-\sqrt{3457.44}}{2*4.9}=\frac{29.4-\sqrt{3457.44}}{9.8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29.4)+\sqrt{3457.44}}{2*4.9}=\frac{29.4+\sqrt{3457.44}}{9.8} $

See similar equations:

| 0.2q^2-11q+30=0 | | 0.2q-11q+30=0 | | .52x-6=0 | | (4c+5)(7c-6)=- | | 9-x=2x+1+x | | 7x-26=5x= | | 7m+13/2=13 | | 7m+13/2=19 | | 5=s/24 | | 2(x+8)=x+6 | | 5x2–4x–12=0 | | v/8=4 | | x+0.1x=57.3 | | 2(x+8)=2(x+6) | | 9=5p-7*2 | | x+0.1=57.3 | | x−28=22 | | x-15/3=7 | | 8•n=20 | | 104+30+x=180 | | 85+65+x=180 | | 20k+90=20k+120 | | 2^x+2^x=2^36 | | 2g-3=-4(g+1) | | 2/8x=14/9 | | 7x^2-57x-105=0 | | 2x+8=133 | | 2x/5+1/2=4 | | 9x–7=4x+8 | | 8-x=-8.5 | | 53=t/4 | | (7t+8)^2=13 |

Equations solver categories