If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+56t
We move all terms to the left:
0-(-16t^2+56t)=0
We add all the numbers together, and all the variables
-(-16t^2+56t)=0
We get rid of parentheses
16t^2-56t=0
a = 16; b = -56; c = 0;
Δ = b2-4ac
Δ = -562-4·16·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-56}{2*16}=\frac{0}{32} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+56}{2*16}=\frac{112}{32} =3+1/2 $
| 40=(6x+2) | | 6c=c+60=180 | | 3s=s+36=180 | | 2u=u+43=u+12=180 | | 11/3x+3=23/3 | | 8x=-4x-15 | | 6u=u+45=180 | | 2b=b+31=180 | | 3=−4g− | | An=5n-18 | | (6x-7)=4x-1) | | 2X4,+5y-10=0 | | b-(-8)=9 | | (9x*9x)+12x=32 | | -4d=-38 | | 2v=72-7v | | t=-49t^2+147t | | x2-3=14 | | 100=10(10+x) | | 1.8+32=y | | 1+6x=4x+13 | | F-6=-2f+3f-6 | | 9u=2u+49 | | 56=5n | | 6x+6=5x+17 | | (7x+14)=9x-8 | | -23.4-x=15.6 | | 6x=-4+7x | | 6x=-4x+7x | | 64-3u=-5u | | 6+7x+2x=60 | | 2.1+x=17.6 |