0=-16t2+30+200

Simple and best practice solution for 0=-16t2+30+200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t2+30+200 equation:



0=-16t^2+30+200
We move all terms to the left:
0-(-16t^2+30+200)=0
We add all the numbers together, and all the variables
-(-16t^2+30+200)=0
We get rid of parentheses
16t^2-30-200=0
We add all the numbers together, and all the variables
16t^2-230=0
a = 16; b = 0; c = -230;
Δ = b2-4ac
Δ = 02-4·16·(-230)
Δ = 14720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14720}=\sqrt{64*230}=\sqrt{64}*\sqrt{230}=8\sqrt{230}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{230}}{2*16}=\frac{0-8\sqrt{230}}{32} =-\frac{8\sqrt{230}}{32} =-\frac{\sqrt{230}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{230}}{2*16}=\frac{0+8\sqrt{230}}{32} =\frac{8\sqrt{230}}{32} =\frac{\sqrt{230}}{4} $

See similar equations:

| -18y—4y=-14 | | 3(2x+1)=6×+1 | | 7x+10=4x−2 | | 4.10/z=6.5 | | -2=5w+8 | | X×x=6x-9 | | 220=97+2x | | 12.5x+4=7+37 | | 6x-53=5 | | 4/8=b/2 | | +18y=-9 | | z/10=1 | | (x/4)=69 | | 10-(3x-7)=4(9-2x) | | 4/3=5/a | | w+6=3w-16 | | 14x12x=52 | | 2z-15=4+3z | | 5x+10=2x-5=180 | | -4+4v=-24 | | x+x^2=131 | | 2x-4/6=2 | | -2-x=3 | | -4(-4x-8)-6x=-68 | | 17r-10r+7r+8r=44 | | 2x=220-97 | | 3+5n=1+2+8n | | (x+4)/3=1 | | 2p-26+2p+22=180 | | x+6.61=8.29 | | -6+2b=2b+b | | -1/2(4x-8)=10 |

Equations solver categories