0=-16t^2+128t+80

Simple and best practice solution for 0=-16t^2+128t+80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+128t+80 equation:



0=-16t^2+128t+80
We move all terms to the left:
0-(-16t^2+128t+80)=0
We add all the numbers together, and all the variables
-(-16t^2+128t+80)=0
We get rid of parentheses
16t^2-128t-80=0
a = 16; b = -128; c = -80;
Δ = b2-4ac
Δ = -1282-4·16·(-80)
Δ = 21504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{21504}=\sqrt{1024*21}=\sqrt{1024}*\sqrt{21}=32\sqrt{21}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-32\sqrt{21}}{2*16}=\frac{128-32\sqrt{21}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+32\sqrt{21}}{2*16}=\frac{128+32\sqrt{21}}{32} $

See similar equations:

| 40•5^(x-2)=200 | | x-2/8-x-2/x=-1/4 | | -9(x-7)+6=69 | | 2(-3a+50)=-4(a+4) | | 3x-(8-5x)=11 | | 9-15=4z-3 | | 3210=x+.07x | | 2a-14+7=a | | 4n=- | | 7=13-0.25h | | 150m-75m+53,075=55,000-200m | | 3x+52=7x+8 | | 20/x=90/180 | | 24+2a=20 | | 63+x+21=3x | | 313/2.5=x/12.5 | | 3+5x=6x+10 | | 3-5x=6x+10x | | 6x-(x+70)=13-5 | | 6x+2x-10=7x | | 3-5x=6x+1x | | 10(10)+x+0.01x^2=700 | | 3+5x=6+10x | | 4a-2(a+60)=12-36 | | 4a-2(a+60=12-36 | | (4+2+3+x)/4=3.8 | | 4+2+3+x=3.8 | | 4+2+2x=3.8 | | 4(x+2)+(5x-7)+62=180 | | 4x-1°=20x+13° | | 546.94=240+1.03x | | (w-4)^2-72=0 |

Equations solver categories