0=(2x-9)*(x+5))/(x-4)

Simple and best practice solution for 0=(2x-9)*(x+5))/(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(2x-9)*(x+5))/(x-4) equation:



0=(2x-9)(x+5))/(x-4)
We move all terms to the left:
0-((2x-9)(x+5))/(x-4))=0
Domain of the equation: (x-4))+0!=0
x∈R
We multiply parentheses ..
-((+2x^2+10x-9x-45))/(x-4))+0=0
We multiply all the terms by the denominator
-((+2x^2+10x-9x-45))=0
We calculate terms in parentheses: -((+2x^2+10x-9x-45)), so:
(+2x^2+10x-9x-45)
We get rid of parentheses
2x^2+10x-9x-45
We add all the numbers together, and all the variables
2x^2+x-45
Back to the equation:
-(2x^2+x-45)
We get rid of parentheses
-2x^2-x+45=0
We add all the numbers together, and all the variables
-2x^2-1x+45=0
a = -2; b = -1; c = +45;
Δ = b2-4ac
Δ = -12-4·(-2)·45
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-19}{2*-2}=\frac{-18}{-4} =4+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+19}{2*-2}=\frac{20}{-4} =-5 $

See similar equations:

| 3=-3y(y-5)-2(y+0.3) | | 4x-100x^2=0 | | 279=78-u | | 72+26s+28s=180 | | 3/4(x)+5=17 | | 2x+8-5x=16 | | (-7x+8)=6 | | -7.3t+2.1=-19.3t+11.1t-6.9 | | 5(2y+1)=-6 | | T=6+30.3s | | Y=2x+10/5 | | H=100t-50t^2 | | T=6s+30.3 | | 13x-24=-6 | | 4-4x=5+x | | 3t+2t+35=180 | | x+(x+1)+(x+2)=915 | | 5.80x=1.50+14 | | -3+3r+19r=18r-19 | | –13q+20=–15q | | 3(1-2x)=0.25(6x+9) | | -3-5y=6-2y | | 8y-13+15=180 | | 5(n)=2(n-3) | | 6x+20+40=180 | | 5x–13=22 | | 39+79+2p=180 | | 3/2x+10.5=15 | | 12-2b=6-b | | 6b+18=7b | | 7x/7x=48x | | -3-7y=17-6y |

Equations solver categories