0=(20-2x)(16-2x)

Simple and best practice solution for 0=(20-2x)(16-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(20-2x)(16-2x) equation:



0=(20-2x)(16-2x)
We move all terms to the left:
0-((20-2x)(16-2x))=0
We add all the numbers together, and all the variables
-((-2x+20)(-2x+16))+0=0
We add all the numbers together, and all the variables
-((-2x+20)(-2x+16))=0
We multiply parentheses ..
-((+4x^2-32x-40x+320))=0
We calculate terms in parentheses: -((+4x^2-32x-40x+320)), so:
(+4x^2-32x-40x+320)
We get rid of parentheses
4x^2-32x-40x+320
We add all the numbers together, and all the variables
4x^2-72x+320
Back to the equation:
-(4x^2-72x+320)
We get rid of parentheses
-4x^2+72x-320=0
a = -4; b = 72; c = -320;
Δ = b2-4ac
Δ = 722-4·(-4)·(-320)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-8}{2*-4}=\frac{-80}{-8} =+10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+8}{2*-4}=\frac{-64}{-8} =+8 $

See similar equations:

| 59+(13x+7)=180 | | R=-2c+64 | | 4*0-2y=0,y | | 3-y=-15,y | | 4(k-6=6(k+2 | | 2-y=-15,y | | x+41+90=180 | | 1-y=-15,y | | X^2-18x+60=-21 | | 0-y=-15,y | | -1=-3+2u | | 5x+12+35-8x=6x+38 | | 8.7x-16.4=35.8 | | 4*3-4y=24,y | | 4*2-4y=24,y | | 4*1-4y=24,y | | 4*0-4y=24,y | | 5z+17=4z+3 | | 5z—6=41 | | 10x-13=26 | | 2+5.4k=18.43 | | (6y)y=384 | | 3x15+2x=180 | | 20x-77=30x-117 | | (3x-5)(5x+4)=0 | | 11x+82=7x+54 | | -4x+28=-6x+44 | | 7w-11÷8=3 | | (48.26*125+15x)/(125+15)=42.95 | | 3x-15=180-2x | | 4.5=8w | | 5x+4/7=3/5 |

Equations solver categories