If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=(0.2x*3-0.3x*2+0.1)(-0.1x*5+0.4*2+4)+0.3
We move all terms to the left:
0-((0.2x*3-0.3x*2+0.1)(-0.1x*5+0.4*2+4)+0.3)=0
We add all the numbers together, and all the variables
-((0.2x*3-0.3x*2+0.1)(-0.1x*5+4.8)+0.3)+0=0
We add all the numbers together, and all the variables
-((0.2x*3-0.3x*2+0.1)(-0.1x*5+4.8)+0.3)=0
We multiply parentheses ..
-((+0x^2+0x+0x^2+0x+0x+0.48)+0.3)=0
We calculate terms in parentheses: -((+0x^2+0x+0x^2+0x+0x+0.48)+0.3), so:We get rid of parentheses
(+0x^2+0x+0x^2+0x+0x+0.48)+0.3
We get rid of parentheses
0x^2+0x^2+0x+0x+0x+0.48+0.3
We add all the numbers together, and all the variables
2x^2+3x+0.78
Back to the equation:
-(2x^2+3x+0.78)
-2x^2-3x-0.78=0
a = -2; b = -3; c = -0.78;
Δ = b2-4ac
Δ = -32-4·(-2)·(-0.78)
Δ = 2.76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{2.76}}{2*-2}=\frac{3-\sqrt{2.76}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{2.76}}{2*-2}=\frac{3+\sqrt{2.76}}{-4} $
| 11x−2x+15=8+7+9x11x−2x+15=8+7+9x | | 8+4x-2x=28 | | 9-5xx-3=x | | J(-5)=2x+9 | | 3=−1/2c | | 5x+7=x+15*6x-26 | | 0.6x+3=0.2x+7 | | 3=−12c | | 82=2(7h+2h+14) | | 26d=-52 | | -2(3x-2)=4(x=4) | | 12x+80=367.4 | | 21x+43=22x+43 | | (4w+14)=22 | | 7=n-15 | | 2.2^x+4=36 | | -3/2x=22 | | S/2-8=s/6+12 | | 6s+24= | | 17-9y=-3+16y* | | 4^x+1–33×2^x+8=0 | | 5=9+w−3 | | 5^x+4=129 | | 12x+14=7x | | 3=2/7x-3 | | 2(22-3x)=3x+8 | | 14k−11k=3 | | -2•3+8=y | | 4x^2+2=-430 | | 6(5x-3)+4=14 | | 8=-8(5y-6) | | 3-a=11-5a |