0.875x-0.5=3/16x+5

Simple and best practice solution for 0.875x-0.5=3/16x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.875x-0.5=3/16x+5 equation:



0.875x-0.5=3/16x+5
We move all terms to the left:
0.875x-0.5-(3/16x+5)=0
Domain of the equation: 16x+5)!=0
x∈R
We get rid of parentheses
0.875x-3/16x-5-0.5=0
We multiply all the terms by the denominator
(0.875x)*16x-5*16x-(0.5)*16x-3=0
We add all the numbers together, and all the variables
(+0.875x)*16x-5*16x-(0.5)*16x-3=0
We multiply parentheses
0x^2-5*16x-8x-3=0
Wy multiply elements
0x^2-80x-8x-3=0
We add all the numbers together, and all the variables
x^2-88x-3=0
a = 1; b = -88; c = -3;
Δ = b2-4ac
Δ = -882-4·1·(-3)
Δ = 7756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7756}=\sqrt{4*1939}=\sqrt{4}*\sqrt{1939}=2\sqrt{1939}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-88)-2\sqrt{1939}}{2*1}=\frac{88-2\sqrt{1939}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-88)+2\sqrt{1939}}{2*1}=\frac{88+2\sqrt{1939}}{2} $

See similar equations:

| 0=1+x/8 | | |v+2|=-7 | | 30+.025p=55 | | 6n+16-6n=30 | | 0=15.75-3.2x | | 4+n-9=-9+12n+12 | | 9x+17+12x-6=16 | | 3x+17x-4=20x+20 | | 10x^2-30=10 | | 8/6=n/27 | | 13=w÷-3-4 | | 5+3(3w-2)=-2(7w-3)+9w | | x/7-12=7 | | -30=(-27n)-63 | | (2x+36)=4x | | 2a+3a+5/2a+3+3=0 | | -10x^2+320x-2551=0 | | 5.5b+8+.5b=19+6b | | 5x=4-4 | | -12m+-20=-2m+4 | | 96=(1)/(2)(13+19)h | | -1+5n=64 | | 100m=2475-175m | | -3(t-4)+6t=9t-6 | | 5z-3+z=7z-8 | | 2/3x+5x=4-x | | 2(x-4)=-9 | | 97=13z | | 30+025p=55 | | 13x-4=72 | | -2(6-3x)=12+6 | | 7+n/9=6 |

Equations solver categories