0.75x-5/8x=44

Simple and best practice solution for 0.75x-5/8x=44 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.75x-5/8x=44 equation:



0.75x-5/8x=44
We move all terms to the left:
0.75x-5/8x-(44)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We multiply all the terms by the denominator
(0.75x)*8x-44*8x-5=0
We add all the numbers together, and all the variables
(+0.75x)*8x-44*8x-5=0
We multiply parentheses
0x^2-44*8x-5=0
Wy multiply elements
0x^2-352x-5=0
We add all the numbers together, and all the variables
x^2-352x-5=0
a = 1; b = -352; c = -5;
Δ = b2-4ac
Δ = -3522-4·1·(-5)
Δ = 123924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{123924}=\sqrt{4*30981}=\sqrt{4}*\sqrt{30981}=2\sqrt{30981}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-352)-2\sqrt{30981}}{2*1}=\frac{352-2\sqrt{30981}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-352)+2\sqrt{30981}}{2*1}=\frac{352+2\sqrt{30981}}{2} $

See similar equations:

| 10g-9g=11 | | 11/15w=42/5 | | 2÷3x=-8 | | 4-2x/9+x=-1 | | 8^-5x+5=53 | | 12z+20z+-15z-11z+-7z=2 | | 143/7+w=83/7 | | –(0.79m+0.227)=–(2.09m+0.838) | | 84=-3*5x-3 | | 6-c=c | | Y^2=-x^2-40 | | 16-3a=a+8 | | w-21/8=37/8 | | |6x-7|=|2x+13| | | 18p-10p-7=9 | | –4x–12=–12–4x | | 3n-2n-n+3n=18 | | 1/2(h)=10 | | 9r-5r=4 | | 0.05x+10-0.25x=6.40 | | N+6/2=8n/4 | | 5m+2m-6m+2m+2m=20 | | x^2+311=900 | | 1.3z+1.5=5 | | 10x^2-81x+8=0 | | n-64/5=108/9 | | 3x^2+37x+42=0 | | x^2=589 | | 14j-17j+14j=-11 | | 19a-19a+2a=18 | | -7x+4=3x-1 | | 1.36x=10.88 |

Equations solver categories