If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2-8=0
a = 0.5; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·0.5·(-8)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*0.5}=\frac{-4}{1} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*0.5}=\frac{4}{1} =4 $
| -61=c/9+-66 | | x+10=-10.6 | | 3(4a=2)=2(a-2) | | 3b-4=b+64 | | 2x2+11x+6=0 | | s/11+448=477 | | (c-1)^2+7=3 | | x+10=10.6 | | 102=2x+12 | | 13x-230=4x-14 | | 8(v-870)=328 | | w+4.9=10.5 | | 10x2+26x+16=0 | | (2x+3)^2=54 | | -18(d+271)=432 | | x/3+1=3 | | 9+8x=-23 | | 2(x+10)^2=15 | | -4x(x-9)=-8 | | -1/2x-8=0 | | 180=5x+2+3x+18 | | k-11=7 | | x-8.5=6.8 | | p+83/15=16 | | 3(y+4)+2(y-3)=36 | | 2f–4=2 | | 10r=-190 | | m+7=48 | | p+13/15=16 | | 3(n+1)=4(n+5) | | x+5/x=7/3 | | -27g+44=233 |