If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x+8/7x=x+18
We move all terms to the left:
0.5x+8/7x-(x+18)=0
Domain of the equation: 7x!=0We get rid of parentheses
x!=0/7
x!=0
x∈R
0.5x+8/7x-x-18=0
We multiply all the terms by the denominator
(0.5x)*7x-x*7x-18*7x+8=0
We add all the numbers together, and all the variables
(+0.5x)*7x-x*7x-18*7x+8=0
We multiply parentheses
0x^2-x*7x-18*7x+8=0
Wy multiply elements
0x^2-7x^2-126x+8=0
We add all the numbers together, and all the variables
-6x^2-126x+8=0
a = -6; b = -126; c = +8;
Δ = b2-4ac
Δ = -1262-4·(-6)·8
Δ = 16068
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16068}=\sqrt{4*4017}=\sqrt{4}*\sqrt{4017}=2\sqrt{4017}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-126)-2\sqrt{4017}}{2*-6}=\frac{126-2\sqrt{4017}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-126)+2\sqrt{4017}}{2*-6}=\frac{126+2\sqrt{4017}}{-12} $
| p^2+44p+4=0 | | 15x+20=25 | | 68=(1/5)(20x | | 90=n+7+3n+4+2n-12 | | x/15-4=-6 | | 6x-8x-6=1 | | 3(x+50)+4x=1200 | | 12-5a=a-7 | | 4x+4+8x=28 | | H(2)=x^2-8x+1 | | 4x+7=-7+2x+18 | | x2-10×-24=0 | | 20p=180 | | 30.93=6g+3.57 | | 3(x-5)=7x=65 | | 3(w-2)=24 | | 40+4x=-6(-x-4) | | X^+3x+2=0 | | -(4x+2/6)=7 | | 4(4m-2)=8 | | 2(2d+3)-d+8=38 | | Y=1.3x+5.5 | | 16x+4=8x-16 | | 5x-4=35x+20 | | 4(x-4)=-31+x | | 12y+2=26+4y | | -3.6x=52.56 | | 6×^-x-1=0 | | v/2-15=20 | | 8=a/3=6 | | -4=y-(-28) | | 8x^-3x+2x=0 |