0.5x+1=(0.1x)(0.6)(x-3)

Simple and best practice solution for 0.5x+1=(0.1x)(0.6)(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.5x+1=(0.1x)(0.6)(x-3) equation:



0.5x+1=(0.1x)(0.6)(x-3)
We move all terms to the left:
0.5x+1-((0.1x)(0.6)(x-3))=0
We add all the numbers together, and all the variables
0.5x-((+0.1x)(0.6)(x-3))+1=0
We multiply parentheses ..
0.5x-((+0x)(x-3))+1=0
We calculate terms in parentheses: -((+0x)(x-3)), so:
(+0x)(x-3)
We add all the numbers together, and all the variables
(+x)(x-3)
We multiply parentheses ..
(+x^2-3x)
We get rid of parentheses
x^2-3x
Back to the equation:
-(x^2-3x)
We get rid of parentheses
-x^2+0.5x+3x+1=0
We add all the numbers together, and all the variables
-1x^2+3.5x+1=0
a = -1; b = 3.5; c = +1;
Δ = b2-4ac
Δ = 3.52-4·(-1)·1
Δ = 16.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3.5)-\sqrt{16.25}}{2*-1}=\frac{-3.5-\sqrt{16.25}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3.5)+\sqrt{16.25}}{2*-1}=\frac{-3.5+\sqrt{16.25}}{-2} $

See similar equations:

| –10+8k=–7(–k+2) | | -24=7n+n | | 5b=860 | | 2(d+4)=-6 | | 2(x+2)=-4x16 | | 3x+6=21x | | 11=4+c | | 6+x=3x+ | | 7b+6=2b+9 | | 17=s/14 | | f(X-1)=4X^2-5X+1 | | 2m+3m+1=11 | | f(X-1)=4X^2-5X+` | | 19-7b=-30 | | 20h=240 | | 100-r=2(1+11r)-16r | | 25x-75+3x+9-2x^2+18=0 | | -8-3x=3x+-14 | | 2(1.5n+4)-6n=-7= | | 7(j-92)=-21 | | 5x+15=39+2x | | 3z-3+8z=5-z | | 22(19)+6=4y+8 | | −60=  −24+12r−24+12r | | v-66/7=3 | | 3x-1-22x+6=180 | | -4t-4t=80 | | Y=0.20x+6 | | 4^(x+3)-4^x=252 | | 36=4(t-86) | | 2x^2-28x-48=0 | | y/4+2=12 |

Equations solver categories