0.5x+(8/7x)=x+9

Simple and best practice solution for 0.5x+(8/7x)=x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.5x+(8/7x)=x+9 equation:



0.5x+(8/7x)=x+9
We move all terms to the left:
0.5x+(8/7x)-(x+9)=0
Domain of the equation: 7x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
0.5x+(+8/7x)-(x+9)=0
We get rid of parentheses
0.5x+8/7x-x-9=0
We multiply all the terms by the denominator
(0.5x)*7x-x*7x-9*7x+8=0
We add all the numbers together, and all the variables
(+0.5x)*7x-x*7x-9*7x+8=0
We multiply parentheses
0x^2-x*7x-9*7x+8=0
Wy multiply elements
0x^2-7x^2-63x+8=0
We add all the numbers together, and all the variables
-6x^2-63x+8=0
a = -6; b = -63; c = +8;
Δ = b2-4ac
Δ = -632-4·(-6)·8
Δ = 4161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-\sqrt{4161}}{2*-6}=\frac{63-\sqrt{4161}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+\sqrt{4161}}{2*-6}=\frac{63+\sqrt{4161}}{-12} $

See similar equations:

| 1.2-4t=3.6 | | 4(3x+9)=-13+38 | | 4x-(-36)=10x | | (U/3)=(u/4)-2 | | -12x+6x=-48 | | (23/14)x=x+9 | | 5x=14x+47 | | 9p-144=25p | | 18=-2.7t^2+30t+6.5 | | -(x+8)=11 | | 6x-8x=5=2(x+2)+ | | 156-17x=-7x-184 | | -3(3b+1)-2b=-36 | | 2x+3x-25=180 | | 3(3b+1)-2b=-36 | | 4(2n-)=12-8n | | 6=3(8+m) | | 25p=9p-144 | | 47=5u-8 | | 2(3b+1)-2b=-36 | | 10t-8=t+4 | | 2a+7=3a+6a | | -r+.5=14.2 | | 6=-w•8 | | -127=8(7x+4)-3x | | 4(x+5)+8=28 | | (6x+4)+(32)=90 | | -31=3x+2(3x-2) | | 8x-4.5=15.5 | | H+4d=30d | | x/2-10=1/2x=21 | | 2b+18=4b-2 |

Equations solver categories