0.5x+(3/2x-4)=17

Simple and best practice solution for 0.5x+(3/2x-4)=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.5x+(3/2x-4)=17 equation:



0.5x+(3/2x-4)=17
We move all terms to the left:
0.5x+(3/2x-4)-(17)=0
Domain of the equation: 2x-4)!=0
x∈R
We get rid of parentheses
0.5x+3/2x-4-17=0
We multiply all the terms by the denominator
(0.5x)*2x-4*2x-17*2x+3=0
We add all the numbers together, and all the variables
(+0.5x)*2x-4*2x-17*2x+3=0
We multiply parentheses
0x^2-4*2x-17*2x+3=0
Wy multiply elements
0x^2-8x-34x+3=0
We add all the numbers together, and all the variables
x^2-42x+3=0
a = 1; b = -42; c = +3;
Δ = b2-4ac
Δ = -422-4·1·3
Δ = 1752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1752}=\sqrt{4*438}=\sqrt{4}*\sqrt{438}=2\sqrt{438}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{438}}{2*1}=\frac{42-2\sqrt{438}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{438}}{2*1}=\frac{42+2\sqrt{438}}{2} $

See similar equations:

| 12x+20=164 | | 6.6x+7.1+6.9+8.8=113.10 | | y=0.05+.25 | | 2x+21=-13 | | 6.6x+7.1+6.9+8.8=180 | | 35=u/2+10 | | 2(g+8)=42 | | w/3+10=36 | | f−1=12 | | 90=5x+x+50 | | .5(4x+5)+4x+5=9x | | -8=0.4n | | 1/3x+3/5=1/15x-2/5 | | 7.5x+8.7+7.1x+7.5=180 | | 15x+28=172 | | 2x^2-18=46 | | 3=t4 | | 0.1x+54+0.3x+52=180 | | 2500(x)^6=2704 | | .75n=15 | | 0.1x+54=90 | | y=-35(4)+20 | | 0.1x+54=180 | | 4+7u=9u | | 0.4x+108=180 | | 4n-6=7n+8 | | .5(4x+5)=9x | | 19=9+2(x-7)9) | | 2(4x+5)=9x | | 189=6x+3(-7x-18 | | (0.4x+101)=90 | | 0.4x+101=90 |

Equations solver categories