0.5x+(1)/(4)x=13.5

Simple and best practice solution for 0.5x+(1)/(4)x=13.5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.5x+(1)/(4)x=13.5 equation:



0.5x+(1)/(4)x=13.5
We move all terms to the left:
0.5x+(1)/(4)x-(13.5)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
0.5x+1/4x-13.5=0
We multiply all the terms by the denominator
(0.5x)*4x-(13.5)*4x+1=0
We add all the numbers together, and all the variables
(+0.5x)*4x-(13.5)*4x+1=0
We multiply parentheses
0x^2-54x+1=0
We add all the numbers together, and all the variables
x^2-54x+1=0
a = 1; b = -54; c = +1;
Δ = b2-4ac
Δ = -542-4·1·1
Δ = 2912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2912}=\sqrt{16*182}=\sqrt{16}*\sqrt{182}=4\sqrt{182}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-4\sqrt{182}}{2*1}=\frac{54-4\sqrt{182}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+4\sqrt{182}}{2*1}=\frac{54+4\sqrt{182}}{2} $

See similar equations:

| 3a-21=a | | x^2+17x=200 | | x11-169=x5-13 | | 3^(2x-3)=24 | | 90/5=x | | 9v+6v−2=17+15v | | 70+50y=630 | | (2x5)(2x2)=16384 | | (27)^2y-2=(3)^2y+15 | | (2x5)(2x2)=214 | | 6x+24=2x-12 | | 39+9x=0 | | 6-2x=-8x= | | 6+12=13x | | (6x+7)+5=180 | | 31/7=x | | 6+24x=28x+10 | | 65=u5 | | b÷=3 | | -x-7x-5=-69 | | 16x-17=-4(-4x+2) | | 21x-5=17x+3 | | 3(x-10)=-27 | | 18=y/5-14 | | 47=−7t−9 | | (w+12)=8 | | 280/4=x | | (7x-27)=(4x-35) | | (10x+7)+(4x+5)=180 | | 340-60=x | | 68/4=x | | 1/2(3/2+1/3)=-1/2(y-5/2) |

Equations solver categories